Hi,
I've recently been studying Lorenz attractors and other chaos circuits and have built one in PD. (I've looked at Ben Bogart's external containing a Lorenz attractor but I wanted to build my own). The patch is detailed below and I'd appreciate any comments regarding any aspect of it, but in particular, I'd like to know:
get erased as the array draws new lines)
value of 0, but it refused to start at all, although it seemed to be working at one stage!)
many thanks
James
#N canvas 530 323 643 475 10; #X text 398 60 dx/dt = S(y-x); #X text 398 75 dy/dt = Rx-y-xz; #X text 398 90 dz/dt = xy-Bz; #X text 398 37 Lorenz's original equations:; #X floatatom 108 191 5 0 0 0 - - -; #X floatatom 178 191 5 0 0 0 - - -; #X floatatom 249 191 5 0 0 0 - - -; #X obj 164 37 bng 15 250 50 0 empty empty empty 17 7 0 10 -262144 -1 -1; #X msg 192 87 10; #X msg 220 87 28; #X msg 249 87 2.66667; #X text 398 120 S=10 , R=28 , B=8/3=2.66667; #X obj 108 142 expr $f4*($f2-$f1) ; ($f5*$f1)-$f2-($f1*$f3) ; ($f1*$f2)-($f6*$f3) ; #X obj 108 275 f; #X obj 136 275 +; #X obj 108 232 t b f; #X obj 86 109 r x; #X obj 108 253 delay 5; #X obj 114 109 r y; #X obj 178 232 t b f; #X obj 178 253 delay 5; #X obj 178 275 f; #X obj 206 275 +; #X obj 136 297 s x; #X obj 206 297 s y; #X obj 249 232 t b f; #X obj 249 253 delay 5; #X obj 249 275 f; #X obj 277 275 +; #X obj 277 296 s z; #X obj 143 109 r z; #N canvas 0 0 450 300 (subpatch) 0; #X array array1 100 float 2; #X coords 0 100 100 -100 200 200 1; #X restore 372 212 graph; #X obj 174 387 tabwrite array1; #X obj 108 210 / 200; #X obj 178 210 / 200; #X obj 249 210 / 200; #X msg 51 211 stop; #X text 191 35 start; #X obj 76 156 bng 15 250 50 0 empty empty empty 0 -6 0 10 -262144 -1 -1; #X text 31 155 resume; #X obj 261 367 * 2; #X obj 174 367 * 3; #X obj 174 346 - 30; #X obj 261 346 + 26; #X msg 108 87 6; #X msg 164 87 0; #X msg 136 87 1; #X connect 4 0 33 0; #X connect 5 0 34 0; #X connect 6 0 35 0; #X connect 7 0 44 0; #X connect 7 0 46 0; #X connect 7 0 45 0; #X connect 7 0 8 0; #X connect 7 0 9 0; #X connect 7 0 10 0; #X connect 8 0 12 3; #X connect 9 0 12 4; #X connect 10 0 12 5; #X connect 12 0 4 0; #X connect 12 1 5 0; #X connect 12 2 6 0; #X connect 13 0 14 0; #X connect 14 0 23 0; #X connect 14 0 13 1; #X connect 14 0 43 0; #X connect 15 0 17 0; #X connect 15 1 14 1; #X connect 16 0 12 0; #X connect 17 0 13 0; #X connect 18 0 12 1; #X connect 19 0 20 0; #X connect 19 1 22 1; #X connect 20 0 21 0; #X connect 21 0 22 0; #X connect 22 0 24 0; #X connect 22 0 21 1; #X connect 25 0 26 0; #X connect 25 1 28 1; #X connect 26 0 27 0; #X connect 27 0 28 0; #X connect 28 0 29 0; #X connect 28 0 27 1; #X connect 28 0 42 0; #X connect 30 0 12 2; #X connect 33 0 15 0; #X connect 34 0 19 0; #X connect 35 0 25 0; #X connect 36 0 17 0; #X connect 38 0 17 0; #X connect 40 0 32 1; #X connect 41 0 32 0; #X connect 42 0 41 0; #X connect 43 0 40 0; #X connect 44 0 12 0; #X connect 45 0 12 2; #X connect 46 0 12 1;