
The Context Modular Sequencer

Liam Goodacre
F1 802 Success Towers, Panchavati

Pashan, Pune 411008, India
liam.goodacre@gmail.com

Abstract

This paper presents Context, a powerful sequencer built
in PD, and explores some new prospects for music
composition made possible by the software. Through a
series of case studies, it is shown how Context can
represent musical structure and sequence many different
sorts of patterns. By looking at Context’s use of random
number generation and internal communication, the
paper explains how the composer can use Context to
create generative music. The paper proposes the Context
network—a collection of interconnected Contexts—as a
medium of musical composition, and highlights the
various possibilities and design choices that emerge
during the development of a Context network.

Keywords

Context, sequencer, DAW, generative, composition

1 Introduction

Context is a modular sequencer built in PD. It aims to
give the user more creative control over musical
composition and to be versatile enough to fit into any PD
patch, from beginner projects to sophisticated
performances. Context is built with the familiar timeline
paradigm at its core, but presents the timeline as a local
object rather than a global environment. As Context is
modular, it does not demand to be used in any particular
way, inviting the user instead to create her own
sequencing environment, according to her personal taste
and style of composition.

I designed Context because I wanted a way of writing
complex pieces of music in PD, as an alternative to
Digital Audio Workstation sequencing. But building and
testing the software has taken me in many directions that
a conventional DAW could not, and has led me to
question the very nature of musical composition. This
paper presents a justification for the Context sequencer,
along with some examples and musings on the kinds of
music that it could create. It is not intended as a user
manual: the software’s functions are not listed in full and
are described only insofar as they are necessary for the
argument1. By the end of the paper, I hope that readers
will appreciate what makes the Context sequencer
special and have some ideas of their own about how they
might use it.

1 Full documentation is forthcoming at

www.contextsequencer.wordpress.com

2 What is a sequencer?

A sequencer is a program or hardware unit that
schedules events in time, for the purposes of
making music. The events that it schedules are
discrete in nature, consisting of simple messages
(ones and zeroes, musical notes, etc), played back
at the right time to create patterns and loops.
Sequencers are arguably the greatest
differentiating factor between electronic and
acoustic music, because they relieve the musician
from the obligation of playing each individual
note. Computer music is programmed by the
user/musician, not played. As such, sequencers are
there to do what computers do best: to take care of
routine operations, so that the user has time to
focus on other, higher level decisions.

Sequencers are not the only attempt that has
been made to program music. Musical scores are
similar to sequencers in that they store music as
information, to be replayed at a later date. As with
sequencers, musical scores save the musician
from the responsibility of memorizing or
improvising. When she becomes literate, the
musician has her repertoire expanded beyond the
bounds of her memory, and the length and
complexity of written music can be made
correspondingly greater. In this way, sequencers
can be seen not just as an invention of the digital
age, but as the continuation of the classical
attempt to formalize music. The difference is of
course that a sequencer achieves a more complete
degree of automation, containing both the score
and the means to play it.

Sequencers occupy a small corner of electronic
music theory, but the paradigm of scheduling
events goes down to its very core. Waveforms are
stored on computers as discrete data; their
playback involves recalling the numbers at the
right time and in the right order. Likewise, the
timeline of a Digital Audio Workstation (DAW),
populated with various recorded tracks and
modulation envelopes, is also a way of organizing
musical events in space so that they will occur at
the right time. Oscillators, sequencers and DAW
environments are all inherently concerned with
determining what happens when, differing from
each other only in scale, oscillators being the
micro-, and DAW timelines the macro- approach
to representing music as information.

2.1 Software sequencing environments

Most DAWs—indeed most pieces of software—
provide an environment in which the user must function
in a predefined way. Context does not take this approach.
Instead, Context presents a small, simple building block
which can be replicated and interconnected in many
different ways. When more than one instances of
Context interact with each other, Context networks are
formed. It is these networks which define the musical
composition.

Other software has adopted the network paradigm for
representing composition. Nodal2, one of the most
successful generative sequencers, presents a circuit-
diagram like grid where “nodes” represent musical
events and random decisions. Koan and Noatikl3 provide
similarly unstructured environments where the user
makes music by connecting various modular units. Many
other programs have developed their own novel ways of
representing composition spatially4.

While such products provided some early inspiration,
Context differs in that it is more completely modular.
Context is not a suite; it is a tool. It is a PD abstraction
which can be placed on any PD canvas, anywhere, and
made to interact with other objects and existing patches.
So rather than defining an environment to which the user
must conform, Context lets users create their own
sequencing networks within the PD environment. As
such, a Context network stands closer to the paradigm of
modular synthesizers—it even lets users “hack” an
instance of Context beyond its original design5. But
instead of shaping voltage or signal, Context determines
events in time.

Context does resemble other sequencers built in PD,
especially Xeq6. The main differences here seem to be
the Graphical User Interface (GUI) and the fact that
Context is a patch, not an external. While this comes at a
cost to the CPU, it has the advantage that it is more
versatile and accessible to the user.

3 Description of the Context sequencer

When Context is started (double clicked), the cursor
moves across the canvas and plays the given pattern.

2 CEMA, Monash Universtiy, 2007-2013:
http://www.csse.monash.edu.au/~cema/nodal

3 Intermorphic, 2007-2016:
https://intermorphic.com/noatikl

4 Notably Blokdust: Twyman, Philips & Silverton 2016:
www.blokdust.com.

5 See “overlay hacking”, Context documentation
(forthcoming)

6 Czaja, “Time and Structure in Xeq”, 2004:
http://puredata.info/community/conventions/convention
04/lectures/tk_czaja

Figure 1: Anatomy of Context

 Time duration determines the length of
time that Context takes to complete one
sequence (ie. how long the cursor takes to
move across the canvas).

 “Pattern” toggles determine the pattern
or rhythm that is played.

 Message determines the message(s) that
are sent by the pattern.

 “Burst” toggles determine what happens
after the pattern is finished.

 Inlets are all identical. When an inlet
receives a message, it will start the
Context cycle.

 Outlets are synched with the “pattern”
toggles, so an outlet will send a message
when the cursor moves over a selected
toggle.

The distinction between the “pattern” and the
“burst” is central to Context’s operation. The
pattern interprets its selection temporally (a then b
then c), resulting in a fixed rhythm or melody
played out through time. The burst interprets its
selection logically (a and/or b and/or c), making a
decision about what happens once the Context
cycle is complete. As the pattern and the burst are
always present, each Context contains a temporal
and a logical component, allowing the user to
define a musical phrase and consider its
consequences at the same time.

Both axes are click-draggable, so the pattern
and burst arrays can come in any length, and
Context can occupy any amount of space on the
canvas. Unfortunately, PD only allows for outlets
on the bottom of an object and not on the side. To
access outlets from the “burst” toggles, the user
can flip the x- and y- axis; the pattern will then

time duration (seconds)

message content

“pattern” selection
toggles

“burst” selection toggles
cursor

ID number
and name

canvas

play from top to bottom, and the outlets will fire
simultaneously at the end of the Context cycle.7

4 Events in Context

It has been said that Context sequences events in time,
but specifically what events? Context does not
discriminate between different types of events it
schedules. It sends PD messages8 which can be
interpreted in any way. This point sounds trivial, but is
important for what follows. Some of the events that
Context could schedule are:

1. A musical note (ie. “C#) or rhythmic beat in
another PD patch

2. A note or beat in another program, through
MIDI or OSC

3. A modulation event (ie. “filter to 1000 Hz”)

4. An arbitrary instruction (ie. “launch the
rocket”)

5. An instruction to start another Context, or
restart itself

6. An instruction to change another Context in
any way (ie. “open toggle #1” ; “change the
delay time to 2 seconds”)

Numbers 5 and 6 are of special significance for the
next sections of this paper.

4 Sequencing musical structure

I define musical structure as the pattern or alteration of
musical or rhythmic phrases through time. So for
instance a simple rhythmic structure might be:

A A A B

where A = 1 x 1 x

and B = 1 1 1 x

Figure 2: In this notation, 1 = one quarter note and x =
one quarter note rest.

Structure is extremely important in music, but
curiously under resourced in most DAW environments9.
A DAW timeline gives a unique timecode to every event
in a composition, down to the minutest details, but this
omniscience comes at a cost: what if the composer

7 This comes across more readily on screen than on paper,
but recognizing the difference between a normal and a
flipped Context will help the reader interpret the
diagrams in this paper. A flipped Context has its cursor
on the top, as in figure 6, rather than on the left, as in
figure 1. The timeline is then read top to bottom, rather
than left to right.

8 Lists, symbols or floats
9 For example, the Recording and Sequencing suite in

Propellerheads Reason:
https://www.propellerheads.se/reason/recording

wishes to leave some event undefined or implied?
Structure cannot be depicted in such an
environment: if the user decides to make a
structural change to the composition, she must
carry out every alteration by hand, analogous to
calculating 2+2+2+2+2+2+2+2 instead of 2*8.
This problem is eased somewhat by “storage
banks” programmed into most step sequencers—
the user can schedule the events A and B to signal
the switching from one pattern to another. But
these storage banks have their limitations. For
instance, what if the composer wishes to design a
second order structure, such as:

C C C D

where C = E F F F

 D = F E E F

E = 1 x 1 x

and F = 1 1 1 x

Figure 3

To capture this structure, you would need a
storage bank of storage banks. Some sequencers
offer such a thing10, but then the question arises,
what if you want a third order structure? and so
on. Clearly the limit of a DAW will soon be
reached.

Since Context does not discriminate between
the types of events that it schedules, it can make
light work of complex, multi-layered structures
such as these. Musical structure can be
determined by the step sequencer with the same
ease as a rhythmic pattern. The following diagram
makes this clear:

Figure 4: A context network representing the
structure described in Figure 3. To see the

structure, follow the connections: the first Context
fires three times to C and once to D. C and D are

10 Ie. Reason’s Matrix Pattern Sequencer:
http://www.soundonsound.com/techniques/reaso
ns-matrix-pattern-sequencer

similarly connected, to E and F, whose toggles represent
quarter notes and quarter note rests.

Here we can see that the structure of the Context
network reflects the structure of the music itself. The
network is arranged in a hierarchy, with each level
dictating what happens below. But hierarchy is not the
only way of conceiving of musical structure. Consider
the following structure:

A B

where A = 1 x 1 x

and B = C or D or E

C = 1 1 1 x

D = 1 1 X 1

and E = 1 X X X

Figure 5

What is required here is a way of depicting a set of
parallel events. This is what Context’s “burst” toggles
are used for. The burst toggles all fire simultaneously at
the end of the Context cycle, but specifically which
toggles fire can vary. The following Context network
satisfies the structure described in figure 5, with the
“burst” toggles from A being used to select from a
parallel series C,D,E.11

Figure 6: A Context network representing a parallel
structure. Here, the “burst” toggles are on the x-axis

and the “pattern” toggles are on the y-axis, so the
timelines progress from top to bottom rather than left to
right. The three open toggles in the “burst” section of

Context 1 function as a selector, choosing first one then
the next toggle once its cycle is complete.

With the techniques laid out in these two examples,
Context can be used to create multi-layered musical
structures with any degree of complexity. Hierarchies
and parallel sets can be built layer upon layer and
interconnected with each other in any way. Because
Context can schedule structural events just as easily as
musical events, the sequencer is capable of representing
musical structure per se, where normal timeline
environments leave it to be inferred.

11 How the burst selects which toggles fire will be covered
in the next section.

What is the point of representing music in
structural terms? One practical reason is power
and control. A tool that allows us to represent
musical structure will save time and effort in the
same way that a repeat sign or coda saves paper.
This becomes most apparent when the composer
decides to change something: a single alteration at
a higher level can determine hundreds of other
events, which would otherwise have had to be
redefined individually12. Saving time is of course
what computers do best, and so structural
representation allows the user to focus on
creative, rather than operational, decisions.

5 Randomness

Thinking about music in structural terms is
enlightening, but it can also become overly
deterministic. The brilliance of music often comes
across more in spontaneity than in structure, and
this is a feature which is difficult, if not
impossible, to program. Lacking the judgement of
the musician, a computer must rely on pseudo
random number generation (PNG) to simulate
spontaneity. It is very easy to program a computer
to play random notes at random time intervals, but
the result is no more musical than a Geiger
counter. To generate non-deterministic music, it is
necessary to find some way of containing the
output of PRG’s to specific decisions, times and
ranges, and for the user to be able to override or
modify a random decision made by the computer
if it is not to her liking.

Context is designed with generative music in
mind, and it is capable of using PRG’s in many
different ways. Because the composition is
represented in the form of a Context network,
random decisions are localized. So, for instance,
the user can determine that the third note of a
particular melody should be random, with the
same ease that she would determine that it should
be C#. Bearing in mind that Context can represent
structural as well as musical events, it follows that
the user can incorporate randomness at any level
of the composition.

There are three different pseudo-random

12 At its mathematical limit, structural
representation has an exponential effect: in a
structural hierarchy such as the one described in
figure 4, an alteration at the nth level can affect
xn other events (assuming that all Contexts have
a pattern size of x).

generators built into Context, each with its own
attributes and characters:

1. Random delay time

2. Random messages

3. Random burst

Random delay time affects the time cycle for an
individual Context, and hence the speed with which its
step sequencer plays. It is defined by a range, so that the
allowed intervals will be no bigger than eg. 10 seconds,
and by a resolution, so that the intervals will come in
denominations of eg. half or whole seconds. The
resolution can also be defined exponentially, so that the
allowed intervals are 2n up until the range limit, where n
is the resolution. This has the advantage of filtering out
non musical time intervals, so that a Context cycle could
last a whole, half, quarter or eighth note, but nothing in
between.

Random messages allow one or more random terms
to be added to the main send message, useful for
determining musical notes and other parameters. Context
messages can be “solved” with more or less the same
ability as a scientific calculator, so for instance a
message “n (2+4)/3” will simplify to “n 2”, and “m (?10
+ 100)” would simplify to “m 109” if the random term ?
10 yields its maximum 9. All simple arithmetic can be
integrated into random note generation, expanding the
user’s options for harnessing chaotic number streams.

Random burst determines which of the burst’s
toggles are selected on the completion of a Context
sequence. This is useful for decision making and
structural randomness. The burst uses Gaussian
distribution to select a toggle, so that the user can
determine the likelihood of a particular toggle firing. The
random selection is then summed with a deterministic
progression, so that 1 (or any number) is added to the
selected toggle number successively. The same set of
parameters is available for determining how many
toggles are selected, as well as which ones. The result is
a diverse palate of options for random decision making,
ranging from linear sequences (A then B then C), to high
& low probability sets (probably A but maybe B), to
completely random scenarios (one, some or all).

In summary, the prospects for generative music are
very rich in Context. Random timings can be made in
congruence with standard musical intervals, random
notes can be manipulated with arithmetic, and random
decisions can be taken according to a probability
distribution. To recall the previous section, it is easy to
see how randomness can be incorporated into musical
structure. Events at any level of structure can be decided
by the burst, and a Context network can randomly
choose between an A and a B section just as easily as it
could randomly choose to play the note C#.

But the lines between rhythm and structure are not
always clear. Figure 7 depicts a simple pattern in Context
6, but is it a rhythm or a structure? Instead of being

played directly, the beats are passed on to the blue
Context which acts as a logic gate, choosing
between three further options: an eighth note, two
sixteenth notes, and a rest (notice the third open
toggle at the end). The pattern depicted by the first
Context then is a sort of a “meta-rhythm”, an
outline of a rhythm which is then interpreted and
played by other Contexts in the network. This is
the sort of non-deterministic music that becomes
possible with Context’s application of pseudo
random generators.

Figure 7: a structure involving random
elements.

6 Internal Messaging

All Context parameters, including time, toggle
selection, and dimension, can be set manually
through the GUI, or automatically through
Context’s internal messaging system. For
example, to open toggle number 3 on the x axis,
the user can either click on it, or send a message
to that Context “ :x 3 ”. Since Context does not
discriminate between the types of events it
schedules, it can also send such a message, giving
Context the ability to alter its own settings. For
instance, the message “ :x 3 ” could be sent from
one Context to another, or even to itself,
instructing it to open its third outlet. Opening and
closing outlet toggles is the most obvious
application, but every Context parameter can be
accessed in the same way. I call this internal
messaging.

The consequence of internal messaging is that a
Context network can evolve over time. This is
more potent than random decision making—
consider the difference between a junction that
offers you a set of alternative paths, versus a
junction that offers you the tools to pave new
road. The possibilities for self-evolving
compositions include:

 A melody or rhythm which changes at a set
point, ie. C# becomes E.

 The modification of a structural event, ie. “go to
section A” becomes “go to section B”.

 The alteration of the Context cycle, ie. the
duration doubles.

 Conditional changes, such as “the first time that
a C# is played, this outlet will open” or “every
5th time that this note plays, there is a 20%
chance that it will be randomly changed to
another note”

 The way in which a network evolves is also open to
definition. Internal messages can be sent by a dedicated
Context timer which sends one ie. every 30 seconds, or
they can be woven into the Context network together
with notes and other events. Remembering that Context
messages can also incorporate random numbers, we also
have the possibility for Context networks to evolve in
random ways. Randomness can be directed towards a
specific parameter (ie. “a random toggle on this Context
will open”) or towards the Context ID numbers (ie. “a
random Context will have its third toggle opened”).

A Context network that evolves at random has some
practical limitations: the law of Entropy dictates that
over time the system will tend from an ordered to a
disordered state. Intervention is necessary if the
composer wants to achieve something purposeful and
avoid musical degeneration. Since internal messages are
interpreted the same as user defined events, the process
of vetting can be carried out in the GUI in the same way
as normal Context design. There is also a separate
“undo” abstraction which keeps a log of all changes
made to the network and reverses them on demand. So
the user still has control over the Context network, even
if it is moving in a chaotic way.

7 Recording

Context can record melodies and rhythms as well as
playing them back. The record function saves notes or
data to the message box, and a pattern to the pattern
toggles, according to the timings in which they are
received. Thus, what Context records is information, not
sound.13

The recorded information can come from the object’s
inlets, or from a send-receive channel. This allows one
Context to record from others in the network, as defined
by their ID tags. The duration of the recording is
predefined by the Context cycle time. Because the
Context has only a finite, usually small, number of outlet
toggles, a kind of resolution is imposed, whereby the
Context can record no more events than there are outlets.

13 A future release of Context will feature sound recording
as well.

There are two immediate implications for
recording. First, a melody or rhythm can be
played into a Context from an external source, ie.
a midi keyboard. This is a useful way of
interfacing with Context and speeding up
composition. The second is that Context can
sample itself. A pattern or melody that is
generated from elsewhere in the network, perhaps
randomly, can be recorded and folded back into
the composition. The record command can either
be executed by the user, or automatically by the
computer through internal messages.

This has further implications for the way that
Context networks evolve. Through internal
messaging, they are likely to evolve slowly and
uniformly, but recording has the potential of
making the process more discrete. One Context
might house a melody or rhythm which functions
as a base for a larger section of the network, as in
Figure 7. The melody evolves somewhat but
never deviates far from the base, until the
command is sent to re-record it. Then a new base
is formed, and the process repeats.

7 Using the Context Canvas

The Context canvas is the coloured area that
lies between the message boxes and the pattern
toggles. It is not wasted space: the canvas
functions as an embeddable timeline for linear
playback. “Content”, a modified PD array object,
allows the user to place arrays on the timeline,
turning Context into a sample player. The Context
sampler has most of the features that one would
expect from a basic sampler: the user can loop,
slice, speed up and reverse the sample through
simple GUI gestures (or internal messages). The
sampler can also relate to the sequence messaging
system: with a tilde (~) character, a Context
message will take a snapshot of the sample,
making Content ideal for custom modulations.

Figure 8: an embedded Content sample

It is also possible to embed one Context within
the canvas of another; while the parent cursor
hovers over it, the embedded Context is “on” and
cycles continuously. Any number of objects can
be embedded within one Context, and embedded
objects can easily and accurately be moved
around the canvas with a special drag-and-drop
tool.

Thus, Context does not force the user to abandon the
global-linear paradigm that has become so ubiquitous in
music software, where each event occupies a point on a
unified timeline. But rather than being conditions of the
environment, globalism and linearity are choices that the
user makes in designing a Context network. The user
might reject altogether the localized and random
approaches suggested in this paper and instead use one
Context canvas as an environment to structure a whole
composition, embedding and arranging samples and
other PD instruments on the timeline. Such design
choices are not restrictive: the user can easily create
many such environments and have them interact as part
of a larger network. In short, Context is capable of
functioning as a universe as well as an atom. As an atom
it can build more complicated structures, and as a
universe it can host other objects for linear playback.

Figure 9: One Context acting as host to other
embedded objects

8 Conclusion

What kind of music can be made on Context? As its
designer, my main motivation is to see somebody else
using Context to create music in a way that I hadn’t even
imagined. Context offers the user the opportunity of
designing and shaping her own sequencing environment,
rather than inheriting one in pre-packaged form. As such,
Context can be whatever you want it to be, from simple
to complex, deterministic to random, linear to non-linear.
The limitations of the software remain to be found, as
they surely will be, but for now the designing and
exploring of Context networks promises to open many
new horizons for generative and performance musicians.

A Context network can become a hive of activity, with
events of all different sorts triggering each other and
cascading through feedback loops like a giant, chaotic
marble run. The resulting sounds might not resemble any
conventional composition, and indeed it has been
suggested that “composition” is not the right word for it
at all. A Context network is like a musical score in that it
has been designed by an artist to represent a piece of
music, but this might guarantee nothing more than a
starting point. The way in which the music progresses
from there might be thought of as a sort of dialogue
between performer and computer, with both parties free
to make changes to the network. The computer takes
some of these decisions at random, to which the user acts

as a supervisor, accepting, canceling or modifying
the computer’s actions as she decides.

Context invites other forms of collaboration as
well. The Context network is inherently de-
centralized, with no part possessing absolute
control over another. Because of this, it would be
possible to design a Context network to be
operated by two or more performers. This could
be done in an organized way: one user having
control over percussion while the other has
control over melody. Or it could be done in a
disorganized way, where both participants have
access to arbitrary, undefined parts of the network,
the resulting music being a surprise to them both.
As Context networks can run themselves with a
high degree of automation, the performer is also
free to respond in other ways, for instance by
playing a “real” instrument in conjunction with
the Context composition.

To finish with a metaphor, I would hope that a
Context network has something in common with a
garden. The seeds originally sewn are not the
same as the plants which grow to envelope their
surroundings, and the gardener must constantly
cultivate, prune and train her work, which is
bursting with its own energy and will to return to
nature. There is no final product, only the
continual confrontation between an artist’s
intentions and forces that are beyond her control.

9 Acknowledgements

My thanks goes to the PDCon16~ organisation
team, and to many people in the online PD
community who have helped me with this project.
I am also deeply indebted to Tristan Chambers for
introducing me to the PD platform and inspiring
me to make my own music software.

Context Version 2 is forthcoming at
www.contextsequencer.wordpress.com, together
with full documentation.

References

CEMA, Monash Universtiy, 2007-2013, Nodal:
http://www.csse.monash.edu.au/~cema/nodal

Intermorphic, 2007-2016, Noatikl:
https://intermorphic.com/noatikl

Twyman, Philips & Silverton, 2016, Blokdust:
www.blokdust.com

Czaja, “Time and Structure in Xeq”, 2004:
http://puredata.info/community/conventions/convention0
4/lectures/tk_czaja

Propellerheads, Reason, 1994-2016:
https://www.propellerheads.se/reason

Price, Sound on Sound, “Reason’s Matrix Pattern
Sequencer”, 2007:
http://www.soundonsound.com/techniques/reasons-
matrix-pattern-sequencer

Goodacre, 2016, Context:
www.contextsequencer.wordpress.com.

	1 Introduction
	2 What is a sequencer?
	2.1 Software sequencing environments
	3 Description of the Context sequencer
	4 Events in Context
	4 Sequencing musical structure
	5 Randomness
	6 Internal Messaging
	7 Recording
	7 Using the Context Canvas
	8 Conclusion
	9 Acknowledgements

