Update of /cvsroot/pure-data/externals/sc4pd/source In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv25088/source
Added Files: OnePole.cpp Resonz.cpp Log Message: checkins
--- NEW FILE: OnePole.cpp --- /* sc4pd OnePole, OnePole~
Copyright (c) 2004 Tim Blechmann.
This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com
Coded while listening to:
*/
#include "sc4pd.hpp"
/* ------------------------ OnePole~ -------------------------------*/
class OnePole_ar: public sc4pd_dsp { FLEXT_HEADER(OnePole_ar,sc4pd_dsp);
public: OnePole_ar(int argc, t_atom *argv);
protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out) { m_signal_fun(n,in,out); }
void m_set(float f) { n_b1=f; changed = true; }
void m_ar() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); }
void m_kr() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr)); }
private: float m_b1, m_y1; float n_b1; bool changed;
DEFSIGCALL (m_signal_fun); DEFSIGFUN (m_signal_ar); DEFSIGFUN (m_signal_kr);
FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK(m_ar); FLEXT_CALLBACK(m_kr); };
FLEXT_LIB_DSP_V("OnePole~",OnePole_ar);
OnePole_ar::OnePole_ar(int argc, t_atom *argv) { FLEXT_ADDMETHOD_(0,"coef",m_set); FLEXT_ADDMETHOD_(0,"ar",m_ar); FLEXT_ADDMETHOD_(0,"kr",m_kr);
//parse arguments AtomList Args(argc,argv);
m_b1 = sc_getfloatarg(Args,0);
if(sc_ar(Args)) { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); AddInSignal(); AddInSignal(); } else // if not given, use control rate SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr));
AddOutSignal();
m_y1 = 0.f; }
void OnePole_ar::m_signal_ar(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *b1p = *(in+1);
float y1 = m_y1;
for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); float b1 = ZXP(b1p); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); } m_y1 = zapgremlins(y1); }
void OnePole_ar::m_signal_kr(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out;
float b1 = m_b1; float y1 = m_y1;
if (changed) { m_b1=n_b1; float b1_slope = CALCSLOPE(m_b1, b1); if (b1 >= 0.f && m_b1 >= 0) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); b1 += b1_slope; } } else if (b1 <= 0.f && m_b1 <= 0) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 + y0); b1 += b1_slope; } } else { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = (1.f - fabs(b1)) * y0 + b1 * y1; b1 += b1_slope; } } changed = false; } else { if (b1 >= 0.f) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); } } else { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 + y0); } }
} m_y1 = zapgremlins(y1); }
/* ------------------------ OnePole ---------------------------------*/
class OnePole_kr: public flext_base { FLEXT_HEADER(OnePole_kr,flext_base);
public: OnePole_kr(int argc, t_atom *argv);
protected: void m_perform(float f);
void m_set(float f) { m_b1=f; }
private: float m_b1, m_y1;
FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK_F(m_perform); };
FLEXT_LIB_V("OnePole",OnePole_kr);
OnePole_kr::OnePole_kr(int argc, t_atom *argv) { FLEXT_ADDMETHOD(0,m_perform); FLEXT_ADDMETHOD_(0,"set",m_set);
AddOutFloat();
//parse arguments AtomList Args(argc,argv);
m_b1 = sc_getfloatarg(Args,0);
m_y1=0; }
void OnePole_kr::m_perform(float f) { m_y1= f + m_b1 * (m_y1 - f); ToOutFloat(0,m_y1); }
--- NEW FILE: Resonz.cpp --- /* sc4pd Resonz~, Resonz
Copyright (c) 2004 Tim Blechmann.
This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com
Coded while listening to: MIMEO: Electric Chair And Table
*/
#include "sc4pd.hpp"
/* ------------------------ Resonz~ -----------------------------*/
class Resonz_ar :public sc4pd_dsp { FLEXT_HEADER(Resonz_ar,sc4pd_dsp);
public: Resonz_ar(int argc,t_atom * argv);
protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out); virtual void m_dsp(int n, t_sample *const *in, t_sample *const *out);
void m_set_freq(float f) { m_freq = f; m_ffreq = m_freq * mRadiansPerSample; changed = true; } void m_set_rq(float f) { m_rq = f; changed = true; }
private: FLEXT_CALLBACK_F(m_set_freq); FLEXT_CALLBACK_F(m_set_rq); float m_y1, m_y2, m_a0, m_b1, m_b2, m_freq, m_rq, m_ffreq; bool changed;
float mRadiansPerSample, mFilterSlope, mFilterLoops, mFilterRemain; };
FLEXT_LIB_DSP_V("Resonz~",Resonz_ar);
Resonz_ar::Resonz_ar(int argc,t_atom * argv) { FLEXT_ADDMETHOD_(0,"freq",m_set_freq); FLEXT_ADDMETHOD_(0,"rq",m_set_rq);
AtomList Args(argc,argv); m_freq = sc_getfloatarg(Args,0); m_rq = sc_getfloatarg(Args,1);
AddOutSignal();
m_a0 = 0.f; m_b1 = 0.f; m_b2 = 0.f; m_y1 = 0.f; m_y2 = 0.f; changed = false; }
void Resonz_ar::m_dsp(int n, t_sample *const *in, t_sample *const *out) { mRadiansPerSample = sc_radianspersample(); mFilterSlope = sc_filterslope(); mFilterLoops = sc_filterloops(); mFilterRemain = sc_filterremain();
m_ffreq = m_freq * mRadiansPerSample; }
void Resonz_ar::m_signal(int n, t_sample *const *in, t_sample *const *out) { t_sample *nout = *out; t_sample *nin = *in;
float y0; float y1 = m_y1; float y2 = m_y2; float a0 = m_a0; float b1 = m_b1; float b2 = m_b2;
if (changed = true) { float B = m_ffreq * m_rq; float R = 1.f - B * 0.5f; float twoR = 2.f * R; float R2 = R * R; float cost = (twoR * cos(m_ffreq)) / (1.f + R2); float b1_next = twoR * cost; float b2_next = -R2; float a0_next = (1.f - R2) * 0.5f; float a0_slope = (a0_next - a0) * mFilterSlope; float b1_slope = (b1_next - b1) * mFilterSlope; float b2_slope = (b2_next - b2) * mFilterSlope;
for (int i = 0; i!= mFilterLoops;++i) { y0 = ZXP(nin) + b1 * y1 + b2 * y2; ZXP(nout) = a0 * (y0 - y2); y2 = ZXP(nin) + b1 * y0 + b2 * y1; ZXP(nout) = a0 * (y2 - y1); y1 = ZXP(nin) + b1 * y2 + b2 * y0; ZXP(nout) = a0 * (y1 - y0); a0 += a0_slope; b1 += b1_slope; b2 += b2_slope; }
for (int i = 0; i!= mFilterRemain;++i) { y0 = ZXP(nin) + b1 * y1 + b2 * y2; ZXP(nout) = a0 * (y0 - y2); y2 = y1; y1 = y0; }
m_a0 = a0_next; m_b1 = b1_next; m_b2 = b2_next; changed = false; } else { for (int i = 0; i!= mFilterLoops;++i) { y0 = ZXP(nin) + b1 * y1 + b2 * y2; ZXP(nout) = a0 * (y0 - y2); y2 = ZXP(nin) + b1 * y0 + b2 * y1; ZXP(nout) = a0 * (y2 - y1); y1 = ZXP(nin) + b1 * y2 + b2 * y0; ZXP(nout) = a0 * (y1 - y0); } for (int i = 0; i!= mFilterRemain;++i) { y0 = ZXP(nin) + b1 * y1 + b2 * y2; ZXP(nout) = a0 * (y0 - y2); y2 = y1; y1 = y0; } } m_y1 = zapgremlins(y1); m_y2 = zapgremlins(y2); }
/* no control rate resonz */