Update of /cvsroot/pure-data/externals/vbap In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv776
Added Files: rvbap.c rvbap-help.pd rvbap-demo.pd Log Message: Added Olaf Matthes' extension of vbap called rvbap, ported from Max to Pd, plus help and demo file.
--- NEW FILE: rvbap-help.pd --- #N canvas 243 71 910 727 10; #X obj 98 144 define_loudspeakers 3 -45 0 45 0 0 45 180 45; #X msg 32 62 bang; #X floatatom 136 276 5 0 0 2 azi - -; #X floatatom 180 276 5 0 0 2 ele - -; #X floatatom 224 276 5 0 100 2 spread - -; #X msg 115 173 bang; #X text 428 201 In two dimensions , only specify the azimuth. (for example "define_loudspeakers 2 -45 45 0 180"; #X text 63 21 VBAP and define_loudspeakers; #X text 430 338 The spread-parameter can be used to prevent a situation where sound is coming from one speaker only , which would make speaker positions "visible". The range is 0 to 100; #X text 231 410 actual location; #X obj 115 350 rvbap 0 0; #X floatatom 277 277 5 1 20 2 dist - -; #X text 131 241 azimuth , elevation , spread and distance; #X msg 98 119 bang; #X text 428 111 1) Use define_loudspeakers to list the speaker positions. The example here defines loudspeakers in three dimensions (the first parameter). For each speaker , define its azimuth and elevation. Here we have speakers front left and right with no elevation (-45 0 45 0) and front and back with 45 degrees of elevation (0 45 180 45). Send the data to vbap.; #X floatatom 159 381 5 0 0 3 azi - -; #X floatatom 203 381 5 0 0 3 ele - -; #X floatatom 247 381 5 0 0 3 spread - -; #X floatatom 300 382 5 0 0 3 dist - -; #X floatatom 277 597 5 0 100 1 dB_after_1sec - -; #X obj 114 691 dac~ 1 2 3 4; #N canvas 0 0 699 527 sig 0; #X obj 58 72 line~; #X msg 58 49 0 , 10000 5; #X obj 58 118 cos~; #X msg 146 70 1; #X obj 146 47 loadbang; #X obj 58 95 clip~ 0 0.25; #X obj 251 134 line~; #X obj 251 157 cos~; #X msg 324 54 -0.25 , 0.25 100; #X obj 251 8 loadbang; #X msg 251 31 -0.25; #X obj 251 203 *~; #X obj 58 140 hip~ 5; #X msg 324 77 -0.25 , 0.25 400; #X floatatom 324 145 0 0 0 0 - - -; #X obj 324 191 osc~ 440; #X obj 324 168 mtof; #X msg 324 31 -0.25 , 0.25 20; #X obj 251 180 *~ 0.1; #X msg 324 100 -0.25 , 0.25 1000; #X msg 324 122 -0.25 , 0.25 2000; #X obj 324 226 *~; #X obj 342 252 *~; #X msg 324 8 0; #X obj 308 257 *~; #X obj 58 26 metro 2000; #X floatatom 58 4 0 0 0 0 - - -; #X text 1 51 impulse; #X text 362 7 tone; #X obj 59 184 outlet~; #X obj 170 6 inlet; #X obj 442 18 metro 500; #X obj 91 8 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1 ; #X connect 0 0 5 0; #X connect 1 0 0 0; #X connect 2 0 12 0; #X connect 3 0 0 0; #X connect 4 0 3 0; #X connect 5 0 2 0; #X connect 6 0 7 0; #X connect 7 0 18 0; #X connect 8 0 6 0; #X connect 9 0 10 0; #X connect 10 0 6 0; #X connect 11 0 12 0; #X connect 12 0 29 0; #X connect 13 0 6 0; #X connect 14 0 16 0; #X connect 15 0 11 1; #X connect 15 0 21 0; #X connect 15 0 21 1; #X connect 15 0 22 0; #X connect 16 0 15 0; #X connect 17 0 6 0; #X connect 18 0 11 0; #X connect 19 0 6 0; #X connect 20 0 6 0; #X connect 21 0 22 1; #X connect 21 0 11 1; #X connect 21 0 24 0; #X connect 21 0 24 1; #X connect 22 0 11 1; #X connect 23 0 6 0; #X connect 24 0 11 1; #X connect 25 0 1 0; #X connect 26 0 25 0; #X connect 30 0 31 0; #X connect 31 0 8 0; #X connect 32 0 25 0; #X restore 159 545 pd sig; #X obj 159 517 tgl 24 0 empty empty test-sigs 26 7 1 10 -262144 -1 -1 0 1; #X obj 115 488 mtx 8 1; #N canvas 352 196 547 360 set-element 0; #X obj 70 81 unpack 0 0; #X obj 70 104 + 1; #X obj 70 137 pack 0 1 0; #X obj 70 179 list trim; #X obj 70 158 list prepend element; #X obj 70 59 inlet; #X obj 70 261 outlet; #X obj 70 221 t b a; #X text 48 33 transforms rvbap-output to be used with [mtx] from iemmatrix ; #X connect 0 0 1 0; #X connect 0 1 2 2; #X connect 1 0 2 0; #X connect 2 0 4 0; #X connect 3 0 7 0; #X connect 4 0 3 0; #X connect 5 0 0 0; #X connect 7 0 6 0; #X connect 7 1 6 0; #X restore 115 464 pd set-element; #N canvas 203 642 802 273 peek 0; #X floatatom 55 198 10 0 0 0 - - -; #X floatatom 134 198 10 0 0 0 - - -; #X floatatom 213 198 10 0 0 0 - - -; #X floatatom 292 198 10 0 0 0 - - -; #X obj 55 74 route 0 1 2 3 4 5 6 7; #X floatatom 366 197 10 0 0 0 - - -; #X floatatom 445 197 10 0 0 0 - - -; #X floatatom 524 197 10 0 0 0 - - -; #X floatatom 603 197 10 0 0 0 - - -; #X obj 55 49 inlet; #X connect 4 0 0 0; #X connect 4 1 1 0; #X connect 4 2 2 0; #X connect 4 3 3 0; #X connect 4 4 5 0; #X connect 4 5 6 0; #X connect 4 6 7 0; #X connect 4 7 8 0; #X connect 9 0 4 0; #X restore 129 438 pd peek; #X floatatom 201 567 5 0 0 1 interp - -; #X msg 297 622 clear; #N canvas 0 0 450 300 tba 0; #X obj 143 51 inlet; #X obj 96 49 inlet; #X obj 191 51 inlet; #X obj 238 51 inlet; #X obj 173 180 outlet; #X obj 61 178 outlet; #X obj 221 180 outlet; #X obj 268 180 outlet; #X obj 126 180 outlet; #X obj 96 73 t b a; #X obj 143 72 t b a; #X obj 191 72 t b a; #X obj 238 72 t b a; #X connect 0 0 10 0; #X connect 1 0 9 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 9 0 5 0; #X connect 9 1 8 0; #X connect 10 0 5 0; #X connect 10 1 4 0; #X connect 11 0 5 0; #X connect 11 1 6 0; #X connect 12 0 5 0; #X connect 12 1 7 0; #X restore 136 316 pd tba; #X obj 318 262 hsl 64 15 1 20 0 0 empty empty empty -2 -8 0 10 -262144 -1 -1 0 1; #N canvas 0 0 766 594 four-reverbs 0; #X obj 67 179 rev1~; #X obj 114 179 rev1~; #X obj 160 179 rev1~; #X obj 210 179 rev1~; #X obj 282 55 inlet; #X obj 67 54 inlet~; #X obj 113 54 inlet~; #X obj 160 53 inlet~; #X obj 211 53 inlet~; #X obj 67 286 outlet~; #X obj 114 268 outlet~; #X obj 159 246 outlet~; #X obj 209 226 outlet~; #X obj 339 55 inlet; #X obj 339 76 b; #X connect 0 0 9 0; #X connect 1 0 10 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 4 0 3 1; #X connect 4 0 2 1; #X connect 4 0 1 1; #X connect 4 0 0 1; #X connect 5 0 0 0; #X connect 6 0 1 0; #X connect 7 0 2 0; #X connect 8 0 3 0; #X connect 13 0 14 0; #X connect 14 0 3 2; #X connect 14 0 2 2; #X connect 14 0 1 2; #X connect 14 0 0 2; #X restore 197 644 pd four-reverbs; #X text 429 15 rvbap is almost compatible to; #X obj 644 15 vbap 0 0; #X obj 33 82 define_loudspeakers 2 -45 45 0 180; #X obj 115 599 mtx_*~ 8 1 20; #X text 711 17 see help for this , too.; #X text 429 36 Additionally it generates additional commands for controlling a reverberated signal and has control to set the radial distance of a sound.; #X text 430 397 3) rvbap also will generate messages to control the amount of reverberated signal to generate. This is meant to be used with [matrix~] or [mtx_*~] from the IEMmatrix collection of externals. ; #X text 431 255 2) For rvbap , give azimuth and elevation and a distance (1-inf , default 1) for the desired location. Bang the first inlet and vbap will output gain-factors for each speaker and the actual location produced. This can be different from the desired one depending where your speakers are.; #X text 433 589 See rvbap-demo.pd for a more complex setup.; #X text 429 467 To use it , create a [mtx_*~] object that has double the amount of outlets as you have speakers. Send the first half of the matrix-signals to the speakers and the second half through a reverbarator and add them to the respective speaker outs. The example shows this in action for four speakers. Pay attention to the "set-element" subpatch which translates the [rvbap] output to set matrix elements correctly. ; #X text 193 439 <= here's the output of [rvbap]; #X connect 0 0 10 0; #X connect 1 0 33 0; #X connect 2 0 28 0; #X connect 3 0 28 1; #X connect 4 0 28 2; #X connect 5 0 10 0; #X connect 10 0 24 0; #X connect 10 0 25 0; #X connect 10 1 15 0; #X connect 10 2 16 0; #X connect 10 3 17 0; #X connect 10 4 18 0; #X connect 11 0 28 3; #X connect 13 0 0 0; #X connect 19 0 30 4; #X connect 21 0 34 1; #X connect 22 0 21 0; #X connect 23 0 34 0; #X connect 24 0 23 0; #X connect 26 0 34 2; #X connect 27 0 30 5; #X connect 28 0 10 0; #X connect 28 1 10 1; #X connect 28 2 10 2; #X connect 28 3 10 3; #X connect 28 4 10 4; #X connect 29 0 11 0; #X connect 30 0 20 0; #X connect 30 1 20 1; #X connect 30 2 20 2; #X connect 30 3 20 3; #X connect 33 0 10 0; #X connect 34 0 20 0; #X connect 34 1 20 1; #X connect 34 2 20 2; #X connect 34 3 20 3; #X connect 34 4 30 0; #X connect 34 5 30 1; #X connect 34 6 30 2; #X connect 34 7 30 3;
--- NEW FILE: rvbap-demo.pd --- #N canvas 243 71 893 632 10; #X obj 345 85 define_loudspeakers 3 -45 0 45 0 0 45 180 45; #X msg 34 63 bang; #X obj 34 83 define_loudspeakers 2 -45 45 135 -135; #X msg 345 60 bang; #X floatatom 196 497 5 0 100 1 dB_after_1sec - -; #X obj 34 591 dac~ 1 2 3 4; #N canvas 0 0 699 527 sig 0; #X obj 58 72 line~; #X msg 58 49 0 , 10000 5; #X obj 58 118 cos~; #X msg 146 70 1; #X obj 146 47 loadbang; #X obj 58 95 clip~ 0 0.25; #X obj 251 134 line~; #X obj 251 157 cos~; #X msg 324 54 -0.25 , 0.25 100; #X obj 251 8 loadbang; #X msg 251 31 -0.25; #X obj 251 203 *~; #X obj 58 140 hip~ 5; #X msg 324 77 -0.25 , 0.25 400; #X floatatom 151 126 0 0 0 0 freq - -; #X obj 324 191 osc~ 440; #X obj 324 168 mtof; #X msg 324 31 -0.25 , 0.25 20; #X obj 251 180 *~ 0.1; #X msg 324 100 -0.25 , 0.25 1000; #X msg 324 122 -0.25 , 0.25 2000; #X obj 324 226 *~; #X obj 342 252 *~; #X msg 324 8 0; #X obj 308 257 *~; #X obj 58 26 metro 2000; #X floatatom 58 4 0 0 0 0 - - -; #X text 1 51 impulse; #X text 362 7 tone; #X obj 59 184 outlet~; #X obj 170 6 inlet; #X obj 442 18 metro 500; #X obj 91 8 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1 ; #X connect 0 0 5 0; #X connect 1 0 0 0; #X connect 2 0 12 0; #X connect 3 0 0 0; #X connect 4 0 3 0; #X connect 5 0 2 0; #X connect 6 0 7 0; #X connect 7 0 18 0; #X connect 8 0 6 0; #X connect 9 0 10 0; #X connect 10 0 6 0; #X connect 11 0 12 0; #X connect 12 0 29 0; #X connect 13 0 6 0; #X connect 14 0 16 0; #X connect 15 0 11 1; #X connect 15 0 21 0; #X connect 15 0 21 1; #X connect 15 0 22 0; #X connect 16 0 15 0; #X connect 17 0 6 0; #X connect 18 0 11 0; #X connect 19 0 6 0; #X connect 20 0 6 0; #X connect 21 0 22 1; #X connect 21 0 11 1; #X connect 21 0 24 0; #X connect 21 0 24 1; #X connect 22 0 11 1; #X connect 23 0 6 0; #X connect 24 0 11 1; #X connect 25 0 1 0; #X connect 26 0 25 0; #X connect 30 0 31 0; #X connect 31 0 8 0; #X connect 32 0 25 0; #X coords 0 -1 1 1 85 60 1 100 100; #X restore 63 415 pd sig; #X obj 63 387 tgl 24 0 empty empty test-sigs 26 7 1 10 -262144 -1 -1 0 1; #X msg 216 522 clear; #N canvas 0 0 766 594 four-reverbs 0; #X obj 67 179 rev1~; #X obj 114 179 rev1~; #X obj 160 179 rev1~; #X obj 210 179 rev1~; #X obj 282 55 inlet; #X obj 67 54 inlet~; #X obj 113 54 inlet~; #X obj 160 53 inlet~; #X obj 211 53 inlet~; #X obj 67 286 outlet~; #X obj 114 268 outlet~; #X obj 159 246 outlet~; #X obj 209 226 outlet~; #X obj 339 55 inlet; #X obj 339 76 b; #X connect 0 0 9 0; #X connect 1 0 10 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 4 0 3 1; #X connect 4 0 2 1; #X connect 4 0 1 1; #X connect 4 0 0 1; #X connect 5 0 0 0; #X connect 6 0 1 0; #X connect 7 0 2 0; #X connect 8 0 3 0; #X connect 13 0 14 0; #X connect 14 0 3 2; #X connect 14 0 2 2; #X connect 14 0 1 2; #X connect 14 0 0 2; #X restore 116 544 pd four-reverbs; #N canvas 0 0 699 527 sig 0; #X obj 58 72 line~; #X msg 58 49 0 , 10000 5; #X obj 58 118 cos~; #X msg 146 70 1; #X obj 146 47 loadbang; #X obj 58 95 clip~ 0 0.25; #X obj 251 134 line~; #X obj 251 157 cos~; #X msg 324 54 -0.25 , 0.25 100; #X obj 251 8 loadbang; #X msg 251 31 -0.25; #X obj 251 203 *~; #X obj 58 140 hip~ 5; #X msg 324 77 -0.25 , 0.25 400; #X floatatom 134 122 0 0 0 0 freq - -; #X obj 324 191 osc~ 440; #X obj 324 168 mtof; #X msg 324 31 -0.25 , 0.25 20; #X obj 251 180 *~ 0.1; #X msg 324 100 -0.25 , 0.25 1000; #X msg 324 122 -0.25 , 0.25 2000; #X obj 324 226 *~; #X obj 342 252 *~; #X msg 324 8 0; #X obj 308 257 *~; #X obj 58 26 metro 2000; #X floatatom 58 4 0 0 0 0 - - -; #X text 1 51 impulse; #X text 362 7 tone; #X obj 59 184 outlet~; #X obj 170 6 inlet; #X obj 442 18 metro 500; #X obj 91 8 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1 ; #X connect 0 0 5 0; #X connect 1 0 0 0; #X connect 2 0 12 0; #X connect 3 0 0 0; #X connect 4 0 3 0; #X connect 5 0 2 0; #X connect 6 0 7 0; #X connect 7 0 18 0; #X connect 8 0 6 0; #X connect 9 0 10 0; #X connect 10 0 6 0; #X connect 11 0 12 0; #X connect 12 0 29 0; #X connect 13 0 6 0; #X connect 14 0 16 0; #X connect 15 0 11 1; #X connect 15 0 21 0; #X connect 15 0 21 1; #X connect 15 0 22 0; #X connect 16 0 15 0; #X connect 17 0 6 0; #X connect 18 0 11 0; #X connect 19 0 6 0; #X connect 20 0 6 0; #X connect 21 0 22 1; #X connect 21 0 11 1; #X connect 21 0 24 0; #X connect 21 0 24 1; #X connect 22 0 11 1; #X connect 23 0 6 0; #X connect 24 0 11 1; #X connect 25 0 1 0; #X connect 26 0 25 0; #X connect 30 0 31 0; #X connect 31 0 8 0; #X connect 32 0 25 0; #X coords 0 -1 1 1 85 60 1 100 100; #X restore 156 414 pd sig; #X obj 156 386 tgl 24 0 empty empty test-sigs 26 7 1 10 -262144 -1 -1 0 1; #X obj 34 364 mtx 8 3; #X obj 35 498 mtx_*~ 8 3 20; #N canvas 0 0 699 527 sig 0; #X obj 58 72 line~; #X msg 58 49 0 , 10000 5; #X obj 58 118 cos~; #X msg 146 70 1; #X obj 146 47 loadbang; #X obj 58 95 clip~ 0 0.25; #X obj 251 134 line~; #X obj 251 157 cos~; #X msg 324 54 -0.25 , 0.25 100; #X obj 251 8 loadbang; #X msg 251 31 -0.25; #X obj 251 203 *~; #X obj 58 140 hip~ 5; #X msg 324 77 -0.25 , 0.25 400; #X floatatom 134 122 0 0 0 0 freq - -; #X obj 324 191 osc~ 440; #X obj 324 168 mtof; #X msg 324 31 -0.25 , 0.25 20; #X obj 251 180 *~ 0.1; #X msg 324 100 -0.25 , 0.25 1000; #X msg 324 122 -0.25 , 0.25 2000; #X obj 324 226 *~; #X obj 342 252 *~; #X msg 324 8 0; #X obj 308 257 *~; #X obj 58 26 metro 2000; #X floatatom 58 4 0 0 0 0 - - -; #X text 1 51 impulse; #X text 362 7 tone; #X obj 59 184 outlet~; #X obj 170 6 inlet; #X obj 442 18 metro 500; #X obj 91 8 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1 ; #X connect 0 0 5 0; #X connect 1 0 0 0; #X connect 2 0 12 0; #X connect 3 0 0 0; #X connect 4 0 3 0; #X connect 5 0 2 0; #X connect 6 0 7 0; #X connect 7 0 18 0; #X connect 8 0 6 0; #X connect 9 0 10 0; #X connect 10 0 6 0; #X connect 11 0 12 0; #X connect 12 0 29 0; #X connect 13 0 6 0; #X connect 14 0 16 0; #X connect 15 0 11 1; #X connect 15 0 21 0; #X connect 15 0 21 1; #X connect 15 0 22 0; #X connect 16 0 15 0; #X connect 17 0 6 0; #X connect 18 0 11 0; #X connect 19 0 6 0; #X connect 20 0 6 0; #X connect 21 0 22 1; #X connect 21 0 11 1; #X connect 21 0 24 0; #X connect 21 0 24 1; #X connect 22 0 11 1; #X connect 23 0 6 0; #X connect 24 0 11 1; #X connect 25 0 1 0; #X connect 26 0 25 0; #X connect 30 0 31 0; #X connect 31 0 8 0; #X connect 32 0 25 0; #X coords 0 -1 1 1 85 60 1 100 100; #X restore 250 416 pd sig; #X obj 250 388 tgl 24 0 empty empty test-sigs 26 7 1 10 -262144 -1 -1 0 1; #X obj 196 353 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1; #N canvas 0 0 818 424 rvbap-module0 0; #X floatatom 104 128 5 0 0 2 azi - -; #X floatatom 148 128 5 0 0 2 ele - -; #X floatatom 192 128 5 0 100 2 spread - -; #X text 199 262 actual location; #X obj 83 202 rvbap 0 0; #X floatatom 245 129 5 1 20 2 dist - -; #X floatatom 127 233 5 0 0 3 azi - -; #X floatatom 171 233 5 0 0 3 ele - -; #X floatatom 215 233 5 0 0 3 spread - -; #X floatatom 268 234 5 0 0 3 dist - -; #N canvas 352 196 547 360 set-element 0; #X obj 70 81 unpack 0 0; #X obj 70 104 + 1; #X obj 70 137 pack 0 1 0; #X obj 70 179 list trim; #X obj 70 158 list prepend element; #X obj 70 59 inlet; #X obj 70 261 outlet; #X obj 70 221 t b a; #X text 48 33 transforms rvbap-output to be used with [mtx] from iemmatrix ; #X obj 168 80 inlet; #X connect 0 0 1 0; #X connect 0 1 2 2; #X connect 1 0 2 0; #X connect 2 0 4 0; #X connect 3 0 7 0; #X connect 4 0 3 0; #X connect 5 0 0 0; #X connect 7 0 6 0; #X connect 7 1 6 0; #X connect 9 0 2 1; #X restore 83 316 pd set-element; #N canvas 203 642 802 273 peek 0; #X floatatom 55 198 10 0 0 0 - - -; #X floatatom 134 198 10 0 0 0 - - -; #X floatatom 213 198 10 0 0 0 - - -; #X floatatom 292 198 10 0 0 0 - - -; #X obj 55 74 route 0 1 2 3 4 5 6 7; #X floatatom 366 197 10 0 0 0 - - -; #X floatatom 445 197 10 0 0 0 - - -; #X floatatom 524 197 10 0 0 0 - - -; #X floatatom 603 197 10 0 0 0 - - -; #X obj 55 49 inlet; #X connect 4 0 0 0; #X connect 4 1 1 0; #X connect 4 2 2 0; #X connect 4 3 3 0; #X connect 4 4 5 0; #X connect 4 5 6 0; #X connect 4 6 7 0; #X connect 4 7 8 0; #X connect 9 0 4 0; #X restore 97 290 pd peek; #N canvas 0 0 450 300 tba 0; #X obj 143 51 inlet; #X obj 96 49 inlet; #X obj 191 51 inlet; #X obj 238 51 inlet; #X obj 173 180 outlet; #X obj 61 178 outlet; #X obj 221 180 outlet; #X obj 268 180 outlet; #X obj 126 180 outlet; #X obj 96 73 t b a; #X obj 143 72 t b a; #X obj 191 72 t b a; #X obj 238 72 t b a; #X connect 0 0 10 0; #X connect 1 0 9 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 9 0 5 0; #X connect 9 1 8 0; #X connect 10 0 5 0; #X connect 10 1 4 0; #X connect 11 0 5 0; #X connect 11 1 6 0; #X connect 12 0 5 0; #X connect 12 1 7 0; #X restore 104 168 pd tba; #X obj 281 114 hsl 64 15 1 20 0 0 empty empty empty -2 -8 0 10 -262144 -1 -1 0 1; #X obj 386 102 loadbang; #X obj 83 345 outlet; #X obj 83 39 inlet; #X obj 304 140 hradio 15 1 0 3 empty empty id: -20 8 1 10 -262144 -1 -1 0; #X obj 386 123 0; #X obj 539 151 f $1; #X text 378 152 in an abstraction , use; #X text 575 154 topass id as argument.; #X obj 338 272 + 1; #X connect 0 0 12 0; #X connect 1 0 12 1; #X connect 2 0 12 2; #X connect 4 0 10 0; #X connect 4 0 11 0; #X connect 4 1 6 0; #X connect 4 2 7 0; #X connect 4 3 8 0; #X connect 4 4 9 0; #X connect 5 0 12 3; #X connect 10 0 15 0; #X connect 12 0 4 0; #X connect 12 1 4 1; #X connect 12 2 4 2; #X connect 12 3 4 3; #X connect 12 4 4 4; #X connect 13 0 5 0; #X connect 14 0 18 0; #X connect 16 0 4 0; #X connect 17 0 22 0; #X connect 18 0 17 0; #X connect 22 0 10 1; #X coords 0 -1 1 1 260 60 1 100 100; #X restore 34 229 pd rvbap-module0; #N canvas 0 0 858 488 rvbap-module1 0; #X floatatom 104 128 5 0 0 2 azi - -; #X floatatom 148 128 5 0 0 2 ele - -; #X floatatom 192 128 5 0 100 2 spread - -; #X text 199 262 actual location; #X obj 83 202 rvbap 0 0; #X floatatom 245 129 5 1 20 2 dist - -; #X floatatom 127 233 5 0 0 3 azi - -; #X floatatom 171 233 5 0 0 3 ele - -; #X floatatom 215 233 5 0 0 3 spread - -; #X floatatom 268 234 5 0 0 3 dist - -; #N canvas 352 196 547 360 set-element 0; #X obj 70 81 unpack 0 0; #X obj 70 104 + 1; #X obj 70 137 pack 0 1 0; #X obj 70 179 list trim; #X obj 70 158 list prepend element; #X obj 70 59 inlet; #X obj 70 261 outlet; #X obj 70 221 t b a; #X text 48 33 transforms rvbap-output to be used with [mtx] from iemmatrix ; #X obj 168 80 inlet; #X connect 0 0 1 0; #X connect 0 1 2 2; #X connect 1 0 2 0; #X connect 2 0 4 0; #X connect 3 0 7 0; #X connect 4 0 3 0; #X connect 5 0 0 0; #X connect 7 0 6 0; #X connect 7 1 6 0; #X connect 9 0 2 1; #X restore 83 316 pd set-element; #N canvas 203 642 802 273 peek 0; #X floatatom 55 198 10 0 0 0 - - -; #X floatatom 134 198 10 0 0 0 - - -; #X floatatom 213 198 10 0 0 0 - - -; #X floatatom 292 198 10 0 0 0 - - -; #X obj 55 74 route 0 1 2 3 4 5 6 7; #X floatatom 366 197 10 0 0 0 - - -; #X floatatom 445 197 10 0 0 0 - - -; #X floatatom 524 197 10 0 0 0 - - -; #X floatatom 603 197 10 0 0 0 - - -; #X obj 55 49 inlet; #X connect 4 0 0 0; #X connect 4 1 1 0; #X connect 4 2 2 0; #X connect 4 3 3 0; #X connect 4 4 5 0; #X connect 4 5 6 0; #X connect 4 6 7 0; #X connect 4 7 8 0; #X connect 9 0 4 0; #X restore 97 290 pd peek; #N canvas 0 0 450 300 tba 0; #X obj 143 51 inlet; #X obj 96 49 inlet; #X obj 191 51 inlet; #X obj 238 51 inlet; #X obj 173 180 outlet; #X obj 61 178 outlet; #X obj 221 180 outlet; #X obj 268 180 outlet; #X obj 126 180 outlet; #X obj 96 73 t b a; #X obj 143 72 t b a; #X obj 191 72 t b a; #X obj 238 72 t b a; #X connect 0 0 10 0; #X connect 1 0 9 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 9 0 5 0; #X connect 9 1 8 0; #X connect 10 0 5 0; #X connect 10 1 4 0; #X connect 11 0 5 0; #X connect 11 1 6 0; #X connect 12 0 5 0; #X connect 12 1 7 0; #X restore 104 168 pd tba; #X obj 281 114 hsl 64 15 1 20 0 0 empty empty empty -2 -8 0 10 -262144 -1 -1 0 1; #X obj 386 102 loadbang; #X obj 83 345 outlet; #X obj 83 39 inlet; #X obj 304 140 hradio 15 1 0 3 empty empty id: -20 8 1 10 -262144 -1 -1 1; #X obj 386 123 1; #X obj 544 152 f $1; #X text 383 153 in an abstraction , use; #X text 580 155 topass id as argument.; #X obj 338 272 + 1; #X connect 0 0 12 0; #X connect 1 0 12 1; #X connect 2 0 12 2; #X connect 4 0 10 0; #X connect 4 0 11 0; #X connect 4 1 6 0; #X connect 4 2 7 0; #X connect 4 3 8 0; #X connect 4 4 9 0; #X connect 5 0 12 3; #X connect 10 0 15 0; #X connect 12 0 4 0; #X connect 12 1 4 1; #X connect 12 2 4 2; #X connect 12 3 4 3; #X connect 12 4 4 4; #X connect 13 0 5 0; #X connect 14 0 18 0; #X connect 16 0 4 0; #X connect 17 0 22 0; #X connect 18 0 17 0; #X connect 22 0 10 1; #X coords 0 -1 1 1 260 60 1 100 100; #X restore 303 229 pd rvbap-module1; #N canvas 0 0 798 493 rvbap-module3 0; #X floatatom 104 128 5 0 0 2 azi - -; #X floatatom 148 128 5 0 0 2 ele - -; #X floatatom 192 128 5 0 100 2 spread - -; #X text 199 262 actual location; #X obj 83 202 rvbap 0 0; #X floatatom 245 129 5 1 20 2 dist - -; #X floatatom 127 233 5 0 0 3 azi - -; #X floatatom 171 233 5 0 0 3 ele - -; #X floatatom 215 233 5 0 0 3 spread - -; #X floatatom 268 234 5 0 0 3 dist - -; #N canvas 352 196 547 360 set-element 0; #X obj 70 81 unpack 0 0; #X obj 70 104 + 1; #X obj 70 137 pack 0 1 0; #X obj 70 179 list trim; #X obj 70 158 list prepend element; #X obj 70 59 inlet; #X obj 70 261 outlet; #X obj 70 221 t b a; #X text 48 33 transforms rvbap-output to be used with [mtx] from iemmatrix ; #X obj 168 80 inlet; #X connect 0 0 1 0; #X connect 0 1 2 2; #X connect 1 0 2 0; #X connect 2 0 4 0; #X connect 3 0 7 0; #X connect 4 0 3 0; #X connect 5 0 0 0; #X connect 7 0 6 0; #X connect 7 1 6 0; #X connect 9 0 2 1; #X restore 83 316 pd set-element; #N canvas 203 642 802 273 peek 0; #X floatatom 55 198 10 0 0 0 - - -; #X floatatom 134 198 10 0 0 0 - - -; #X floatatom 213 198 10 0 0 0 - - -; #X floatatom 292 198 10 0 0 0 - - -; #X obj 55 74 route 0 1 2 3 4 5 6 7; #X floatatom 366 197 10 0 0 0 - - -; #X floatatom 445 197 10 0 0 0 - - -; #X floatatom 524 197 10 0 0 0 - - -; #X floatatom 603 197 10 0 0 0 - - -; #X obj 55 49 inlet; #X connect 4 0 0 0; #X connect 4 1 1 0; #X connect 4 2 2 0; #X connect 4 3 3 0; #X connect 4 4 5 0; #X connect 4 5 6 0; #X connect 4 6 7 0; #X connect 4 7 8 0; #X connect 9 0 4 0; #X restore 97 290 pd peek; #N canvas 0 0 450 300 tba 0; #X obj 143 51 inlet; #X obj 96 49 inlet; #X obj 191 51 inlet; #X obj 238 51 inlet; #X obj 173 180 outlet; #X obj 61 178 outlet; #X obj 221 180 outlet; #X obj 268 180 outlet; #X obj 126 180 outlet; #X obj 96 73 t b a; #X obj 143 72 t b a; #X obj 191 72 t b a; #X obj 238 72 t b a; #X connect 0 0 10 0; #X connect 1 0 9 0; #X connect 2 0 11 0; #X connect 3 0 12 0; #X connect 9 0 5 0; #X connect 9 1 8 0; #X connect 10 0 5 0; #X connect 10 1 4 0; #X connect 11 0 5 0; #X connect 11 1 6 0; #X connect 12 0 5 0; #X connect 12 1 7 0; #X restore 104 168 pd tba; #X obj 281 114 hsl 64 15 1 20 0 0 empty empty empty -2 -8 0 10 -262144 -1 -1 0 1; #X obj 546 102 loadbang; #X obj 83 345 outlet; #X obj 83 39 inlet; #X obj 304 140 hradio 15 1 0 3 empty empty id: -20 8 1 10 -262144 -1 -1 2; #X obj 546 123 2; #X obj 547 186 f $1; #X text 386 187 in an abstraction , use; #X text 583 189 topass id as argument.; #X obj 338 272 + 1; #X connect 0 0 12 0; #X connect 1 0 12 1; #X connect 2 0 12 2; #X connect 4 0 10 0; #X connect 4 0 11 0; #X connect 4 1 6 0; #X connect 4 2 7 0; #X connect 4 3 8 0; #X connect 4 4 9 0; #X connect 5 0 12 3; #X connect 10 0 15 0; #X connect 12 0 4 0; #X connect 12 1 4 1; #X connect 12 2 4 2; #X connect 12 3 4 3; #X connect 12 4 4 4; #X connect 13 0 5 0; #X connect 14 0 18 0; #X connect 16 0 4 0; #X connect 17 0 22 0; #X connect 18 0 17 0; #X connect 22 0 10 1; #X coords 0 -1 1 1 260 60 1 100 100; #X restore 566 230 pd rvbap-module3; #X text 594 203 put this into an abstraction:; #X text 63 21 RVBAP - Demo how to use [mtx_*~]; #X connect 0 0 19 0; #X connect 0 0 18 0; #X connect 0 0 17 0; #X connect 1 0 2 0; #X connect 2 0 17 0; #X connect 2 0 18 0; #X connect 2 0 19 0; #X connect 3 0 0 0; #X connect 4 0 9 4; #X connect 6 0 13 1; #X connect 7 0 6 0; #X connect 8 0 9 5; #X connect 9 0 5 0; #X connect 9 1 5 1; #X connect 9 2 5 2; #X connect 9 3 5 3; #X connect 10 0 13 2; #X connect 11 0 10 0; #X connect 12 0 13 0; #X connect 13 0 5 0; #X connect 13 1 5 1; #X connect 13 2 5 2; #X connect 13 3 5 3; #X connect 13 4 9 0; #X connect 13 5 9 1; #X connect 13 6 9 2; #X connect 13 7 9 3; #X connect 14 0 13 3; #X connect 15 0 14 0; #X connect 16 0 11 0; #X connect 16 0 15 0; #X connect 16 0 7 0; #X connect 17 0 12 0; #X connect 18 0 12 0; #X connect 19 0 12 0;
--- NEW FILE: rvbap.c --- /* rvbap.c vers 1.1
written by Ville Pulkki 1999-2003 Helsinki University of Technology and Unversity of California at Berkeley and written by Olaf Matthes 2003, 2007 Pd port by Frank Barknecht
See copyright in file with name COPYRIGHT */
#include <math.h>
#ifdef MAXMSP #include "ext.h" /* you must include this - it contains the external object's link to max */ #endif
#ifdef PD #include "m_pd.h" /* you must include this - it contains the external object's link to pure data */ #endif
#define MAX_LS_SETS 100 // maximum number of loudspeaker sets (triplets or pairs) allowed #define MAX_LS_AMOUNT 55 // maximum amount of loudspeakers, can be increased
#ifdef _WINDOWS #define sqrtf sqrt #endif
#ifdef MAXMSP typedef struct vbap /* This defines the object as an entity made up of other things */ { t_object x_ob; long x_azi; // panning direction azimuth long x_ele; // panning direction elevation float x_dist; // sound source distance (1.0-infinity) void *x_outlet0; /* outlet creation - inlets are automatic */ void *x_outlet1; void *x_outlet2; void *x_outlet3; void *x_outlet4; float x_set_inv_matx[MAX_LS_SETS][9]; // inverse matrice for each loudspeaker set float x_set_matx[MAX_LS_SETS][9]; // matrice for each loudspeaker set long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers long x_lsset_amount; // amount of loudspeaker sets long x_ls_amount; // amount of loudspeakers long x_dimension; // 2 or 3 long x_spread; // speading amount of virtual source (0-100) float x_spread_base[3]; // used to create uniform spreading float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume } t_rvbap; #endif
#ifdef PD typedef struct vbap /* This defines the object as an entity made up of other things */ { t_object x_ob; t_float x_azi; // panning direction azimuth t_float x_ele; // panning direction elevation t_float x_dist; // sound source distance (1.0-infinity) void *x_outlet0; /* outlet creation - inlets are automatic */ void *x_outlet1; void *x_outlet2; void *x_outlet3; void *x_outlet4; float x_set_inv_matx[MAX_LS_SETS][9]; // inverse matrice for each loudspeaker set t_float x_set_matx[MAX_LS_SETS][9]; // matrice for each loudspeaker set long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers long x_lsset_amount; // amount of loudspeaker sets long x_ls_amount; // amount of loudspeakers long x_dimension; // 2 or 3 t_float x_spread; // speading amount of virtual source (0-100) float x_spread_base[3]; // used to create uniform spreading float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume } t_rvbap; #endif
// Globals
static void new_spread_dir(t_rvbap *x, float spreaddir[3], float vscartdir[3], float spread_base[3]); static void new_spread_base(t_rvbap *x, float spreaddir[3], float vscartdir[3]); #ifdef MAXMSP static void *rvbap_class; static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s); static void rvbap_in1(t_rvbap *x, long n); static void rvbap_in2(t_rvbap *x, long n); static void rvbap_in3(t_rvbap *x, long n); static void rvbap_in4(t_rvbap *x, long n); static void rvbap_ft1(t_rvbap *x, double n); static void rvbap_ft2(t_rvbap *x, double n); static void rvbap_ft3(t_rvbap *x, double n); static void rvbap_ft4(t_rvbap *x, double n); #endif #ifdef PD static t_class *rvbap_class; #endif static void cross_prod(float v1[3], float v2[3], float v3[3]); static void additive_vbap(float *final_gs, float cartdir[3], t_rvbap *x); static void rvbap_bang(t_rvbap *x); static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av); static void spread_it(t_rvbap *x, float *final_gs); static void *rvbap_new(t_symbol *s, int ac, t_atom *av); // using A_GIMME - typed message list static void vbap(float g[3], long ls[3], t_rvbap *x); static void angle_to_cart(long azi, long ele, float res[3]); static void cart_to_angle(float cvec[3], float avec[3]); static void equal_reverb(t_rvbap *x, float *final_gs);
/* above are the prototypes for the methods/procedures/functions you will use */
#ifdef PD void rvbap_setup(void) { rvbap_class = class_new(gensym("rvbap"), (t_newmethod)rvbap_new, 0, (short)sizeof(t_rvbap), 0, A_GIMME, 0); /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */ class_addbang(rvbap_class, rvbap_bang); class_addmethod(rvbap_class, (t_method)rvbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0); } #endif
#ifdef MAXMSP int main(void) { setup((t_messlist **)&rvbap_class, (method)rvbap_new, 0L, (short)sizeof(t_rvbap), 0L, A_GIMME, 0); /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */ addmess((method)rvbap_assist, "assist", A_CANT, 0); addbang((method)rvbap_bang); /* the procedure it uses when it gets a bang in the left inlet */ addinx((method)rvbap_in1, 1); /* the rocedure for an int in the right inlet (inlet 1) */ addinx((method)rvbap_in2, 2); /* the rocedure for an int in the right inlet (inlet 2) */ addinx((method)rvbap_in3, 3); addinx((method)rvbap_in4, 4); addftx((method)rvbap_ft1, 1); /* the rocedure for an int in the right inlet (inlet 1) */ addftx((method)rvbap_ft2, 2); /* the rocedure for an int in the right inlet (inlet 2) */ addftx((method)rvbap_ft3, 3); addftx((method)rvbap_ft4, 4); addmess((method)rvbap_matrix, "loudspeaker-matrices", A_GIMME, 0); post("rvbap v1.1, © 2003-2007 by Olaf Matthes, based on vbap by Ville Pulkki"); return 0; }
static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s) { switch(m) { case 1: // inlet switch(a) { case 0: sprintf(s, "define_loudspeakers / Bang to output actual values."); break; case 1: sprintf(s, "(int) azimuth"); break; case 2: sprintf(s, "(int) elevation"); break; case 3: sprintf(s, "(int) spreading"); break; case 4: sprintf(s, "(float) distance"); break; } break; case 2: // outlet switch(a) { case 0: sprintf(s, "(list) matrix~ values"); break; case 1: sprintf(s, "(int) actual azimuth"); break; case 2: sprintf(s, "(int) actual elevation"); break; case 3: sprintf(s, "(int) actual spreading"); break; case 4: sprintf(s, "(float) actual distance"); break; } break; } } #endif /* end MAXMSP */
static void angle_to_cart(long azi, long ele, float res[3]) /* converts angular coordinates to cartesian */ { float atorad = (2.0 * 3.1415927 / 360.0) ; res[0] = cos((float) azi * atorad) * cos((float) ele * atorad); res[1] = sin((float) azi * atorad) * cos((float) ele * atorad); res[2] = sin((float) ele * atorad); }
static void cart_to_angle(float cvec[3], float avec[3]) // converts cartesian coordinates to angular { float tmp, tmp2, tmp3, tmp4; float atorad = (float)(2.0 * 3.1415927 / 360.0) ; float pi = (float)3.1415927; float power; float dist, atan_y_per_x, atan_x_pl_y_per_z; float azi, ele;
if(cvec[0]==0.0) atan_y_per_x = pi / 2; else atan_y_per_x = atan(cvec[1] / cvec[0]); azi = atan_y_per_x / atorad; if(cvec[0]<0.0) azi +=180; dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]); if(cvec[2]==0.0) atan_x_pl_y_per_z = 0.0; else atan_x_pl_y_per_z = atan(cvec[2] / dist); if(dist == 0.0) if(cvec[2]<0.0) atan_x_pl_y_per_z = -pi/2.0; else atan_x_pl_y_per_z = pi/2.0; ele = atan_x_pl_y_per_z / atorad; dist = sqrtf(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]); avec[0]=azi; avec[1]=ele; avec[2]=dist; }
static void vbap(float g[3], long ls[3], t_rvbap *x) { /* calculates gain factors using loudspeaker setup and given direction */ float power; int i,j,k, gains_modified; float small_g; float big_sm_g, gtmp[3]; long winner_set=0; float cartdir[3]; float new_cartdir[3]; float new_angle_dir[3]; long dim = x->x_dimension; long neg_g_am, best_neg_g_am;
// transfering the azimuth angle to a decent value while(x->x_azi > 180) x->x_azi -= 360; while(x->x_azi < -179) x->x_azi += 360;
// transferring the elevation to a decent value if(dim == 3){ while(x->x_ele > 180) x->x_ele -= 360; while(x->x_ele < -179) x->x_ele += 360; } else x->x_ele = 0;
// go through all defined loudspeaker sets and find the set which // has all positive values. If such is not found, set with largest // minimum value is chosen. If at least one of gain factors of one LS set is negative // it means that the virtual source does not lie in that LS set.
angle_to_cart(x->x_azi,x->x_ele,cartdir); big_sm_g = -100000.0; // initial value for largest minimum gain value best_neg_g_am=3; // how many negative values in this set
for(i=0;i<x->x_lsset_amount;i++){ small_g = 10000000.0; neg_g_am = 3; for(j=0;j<dim;j++){ gtmp[j]=0.0; for(k=0;k<dim;k++) gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim]; if(gtmp[j] < small_g) small_g = gtmp[j]; if(gtmp[j]>= -0.01) neg_g_am--; } if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){ big_sm_g = small_g; best_neg_g_am = neg_g_am; winner_set=i; g[0]=gtmp[0]; g[1]=gtmp[1]; ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1]; if(dim==3){ g[2]=gtmp[2]; ls[2]= x->x_lsset[i][2]; } else { g[2]=0.0; ls[2]=0; } } }
// If chosen set produced a negative value, make it zero and // calculate direction that corresponds to these new // gain values. This happens when the virtual source is outside of // all loudspeaker sets.
if(dim==3){ gains_modified=0; for(i=0;i<dim;i++) if(g[i]<-0.01){ g[i]=0.0001; gains_modified=1; } if(gains_modified==1){ new_cartdir[0] = x->x_set_matx[winner_set][0] * g[0] + x->x_set_matx[winner_set][1] * g[1] + x->x_set_matx[winner_set][2] * g[2]; new_cartdir[1] = x->x_set_matx[winner_set][3] * g[0] + x->x_set_matx[winner_set][4] * g[1] + x->x_set_matx[winner_set][5] * g[2]; new_cartdir[2] = x->x_set_matx[winner_set][6] * g[0] + x->x_set_matx[winner_set][7] * g[1] + x->x_set_matx[winner_set][8] * g[2]; cart_to_angle(new_cartdir,new_angle_dir); x->x_azi = (long) (new_angle_dir[0] + 0.5); x->x_ele = (long) (new_angle_dir[1] + 0.5); } }
power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]); g[0] /= power; g[1] /= power; g[2] /= power; }
static void cross_prod(float v1[3], float v2[3], float v3[3]) // vector cross product { float length; v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]); v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]); v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);
length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); v3[0] /= length; v3[1] /= length; v3[2] /= length; }
static void additive_vbap(float *final_gs, float cartdir[3], t_rvbap *x) // calculates gains to be added to previous gains, used in // multiple direction panning (source spreading) { float power; int i,j,k, gains_modified; float small_g; float big_sm_g, gtmp[3]; long winner_set; float new_cartdir[3]; float new_angle_dir[3]; long dim = x->x_dimension; long neg_g_am, best_neg_g_am; float g[3]; long ls[3] = { 0, 0, 0 };
big_sm_g = -100000.0; best_neg_g_am=3;
for(i=0;i<x->x_lsset_amount;i++){ small_g = 10000000.0; neg_g_am = 3; for(j=0;j<dim;j++){ gtmp[j]=0.0; for(k=0;k<dim;k++) gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim]; if(gtmp[j] < small_g) small_g = gtmp[j]; if(gtmp[j]>= -0.01) neg_g_am--; } if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){ big_sm_g = small_g; best_neg_g_am = neg_g_am; winner_set=i; g[0]=gtmp[0]; g[1]=gtmp[1]; ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1]; if(dim==3){ g[2]=gtmp[2]; ls[2]= x->x_lsset[i][2]; } else { g[2]=0.0; ls[2]=0; } } }
gains_modified=0; for(i=0;i<dim;i++) if(g[i]<-0.01){ gains_modified=1; }
if(gains_modified != 1){ if(dim==3) power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]); else power=sqrt(g[0]*g[0] + g[1]*g[1]); g[0] /= power; g[1] /= power; if(dim==3) g[2] /= power;
final_gs[ls[0]-1] += g[0]; final_gs[ls[1]-1] += g[1]; /* BUG FIX: this was causing negative indices with 2 dimensions so I * made it only try when using 3 dimensions. * 2006-08-13 hans@at.or.at */ if(dim==3) final_gs[ls[2]-1] += g[2]; } }
static void new_spread_dir(t_rvbap *x, float spreaddir[3], float vscartdir[3], float spread_base[3]) // subroutine for spreading { float beta,m_gamma; float a,b; float pi = 3.1415927; float power;
m_gamma = acos(vscartdir[0] * spread_base[0] + vscartdir[1] * spread_base[1] + vscartdir[2] * spread_base[2])/pi*180; if(fabs(m_gamma) < 1){ angle_to_cart(x->x_azi+90, 0, spread_base); m_gamma = acos(vscartdir[0] * spread_base[0] + vscartdir[1] * spread_base[1] + vscartdir[2] * spread_base[2])/pi*180; } beta = 180 - m_gamma; b=sin(x->x_spread * pi / 180) / sin(beta * pi / 180); a=sin((180- x->x_spread - beta) * pi / 180) / sin (beta * pi / 180); spreaddir[0] = a * vscartdir[0] + b * spread_base[0]; spreaddir[1] = a * vscartdir[1] + b * spread_base[1]; spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1] + spreaddir[2]*spreaddir[2]); spreaddir[0] /= power; spreaddir[1] /= power; spreaddir[2] /= power; }
static void new_spread_base(t_rvbap *x, float spreaddir[3], float vscartdir[3]) // subroutine for spreading { float d; float pi = 3.1415927; float power;
d = cos(x->x_spread/180*pi); x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0]; x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1]; x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2]; power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1] + x->x_spread_base[2]*x->x_spread_base[2]); x->x_spread_base[0] /= power; x->x_spread_base[1] /= power; x->x_spread_base[2] /= power; }
static void spread_it(t_rvbap *x, float *final_gs) // apply the sound signal to multiple panning directions // that causes some spreading. // See theory in paper V. Pulkki "Uniform spreading of amplitude panned // virtual sources" in WASPAA 99
{ float vscartdir[3]; float spreaddir[16][3]; float spreadbase[16][3]; long i, spreaddirnum; float power; if(x->x_dimension == 3){ spreaddirnum=16; angle_to_cart(x->x_azi,x->x_ele,vscartdir); new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base); new_spread_base(x, spreaddir[0], vscartdir); cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); // four orthogonal dirs cross_prod(spreadbase[1], vscartdir, spreadbase[2]); cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
// four between them for(i=0;i<3;i++) spreadbase[4][i] = (x->x_spread_base[i] + spreadbase[1][i]) / 2.0; for(i=0;i<3;i++) spreadbase[5][i] = (spreadbase[1][i] + spreadbase[2][i]) / 2.0; for(i=0;i<3;i++) spreadbase[6][i] = (spreadbase[2][i] + spreadbase[3][i]) / 2.0; for(i=0;i<3;i++) spreadbase[7][i] = (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
// four at half spreadangle for(i=0;i<3;i++) spreadbase[8][i] = (vscartdir[i] + x->x_spread_base[i]) / 2.0; for(i=0;i<3;i++) spreadbase[9][i] = (vscartdir[i] + spreadbase[1][i]) / 2.0; for(i=0;i<3;i++) spreadbase[10][i] = (vscartdir[i] + spreadbase[2][i]) / 2.0; for(i=0;i<3;i++) spreadbase[11][i] = (vscartdir[i] + spreadbase[3][i]) / 2.0;
// four at quarter spreadangle for(i=0;i<3;i++) spreadbase[12][i] = (vscartdir[i] + spreadbase[8][i]) / 2.0; for(i=0;i<3;i++) spreadbase[13][i] = (vscartdir[i] + spreadbase[9][i]) / 2.0; for(i=0;i<3;i++) spreadbase[14][i] = (vscartdir[i] + spreadbase[10][i]) / 2.0; for(i=0;i<3;i++) spreadbase[15][i] = (vscartdir[i] + spreadbase[11][i]) / 2.0;
additive_vbap(final_gs,spreaddir[0],x); for(i=1;i<spreaddirnum;i++){ new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]); additive_vbap(final_gs,spreaddir[i],x); } } else if (x->x_dimension == 2) { spreaddirnum=6;
angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]); angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]); angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]); angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]); angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]); angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
for(i=0;i<spreaddirnum;i++) additive_vbap(final_gs,spreaddir[i],x); } else return;
if(x->x_spread > 70) for(i=0;i<x->x_ls_amount;i++){ final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0; }
for(i=0,power=0.0;i<x->x_ls_amount;i++){ power += final_gs[i] * final_gs[i]; }
power = sqrt(power); for(i=0;i<x->x_ls_amount;i++){ final_gs[i] /= power; } }
static void equal_reverb(t_rvbap *x, float *final_gs) // calculate constant reverb gains for equally distributed // reverb levels // this is achieved by calculating gains for a sound source // that is everywhere, i.e. present in all directions
{ float vscartdir[3]; float spreaddir[16][3]; float spreadbase[16][3]; long i, spreaddirnum; float power; if(x->x_dimension == 3){ spreaddirnum=5;
// horizontal plane angle_to_cart(90, 0, spreaddir[0]); angle_to_cart(180, 0, spreaddir[1]); angle_to_cart(270, 0, spreaddir[2]);
// above, below angle_to_cart(0, 90, spreaddir[3]); angle_to_cart(0, -90, spreaddir[4]);
for(i=1;i<spreaddirnum;i++){ additive_vbap(x->x_reverb_gs,spreaddir[i],x); } } else if (x->x_dimension == 2) { // for 2-D we claculate virtual sources // every 45 degrees in a horizontal plane spreaddirnum=7;
angle_to_cart(90, 0, spreaddir[0]); angle_to_cart(180, 0, spreaddir[1]); angle_to_cart(270, 0, spreaddir[2]); angle_to_cart(45, 0, spreaddir[3]); angle_to_cart(135, 0, spreaddir[4]); angle_to_cart(225, 0, spreaddir[5]); angle_to_cart(315, 0, spreaddir[6]);
for(i=0;i<spreaddirnum;i++) additive_vbap(x->x_reverb_gs,spreaddir[i],x); } else return;
for(i=0,power=0.0;i<x->x_ls_amount;i++){ power += x->x_reverb_gs[i] * x->x_reverb_gs[i]; }
power = sqrt(power); for(i=0;i<x->x_ls_amount;i++){ final_gs[i] /= power; } }
static void rvbap_bang(t_rvbap *x) // top level, vbap gains are calculated and outputted { t_atom at[MAX_LS_AMOUNT]; float g[3]; long ls[3]; long i; float *final_gs, overdist, oversqrtdist; final_gs = (float *) getbytes(x->x_ls_amount * sizeof(float)); if(x->x_lsset_available ==1){ vbap(g, ls, x); for(i=0;i<x->x_ls_amount;i++) final_gs[i]=0.0; for(i=0;i<x->x_dimension;i++){ final_gs[ls[i]-1]=g[i]; } if(x->x_spread != 0){ spread_it(x,final_gs); } overdist = 1 / x->x_dist; oversqrtdist = 1 / sqrt(x->x_dist); // build output for every loudspeaker for(i=0;i<x->x_ls_amount;i++) { // first, we output the gains for the direct (unreverberated) signals // these just decrease as the distance increases #ifdef MAXMSP SETLONG(&at[0], i); SETFLOAT(&at[1], (final_gs[i] / x->x_dist)); outlet_list(x->x_outlet0, NULL, 2, at); #endif #ifdef PD SETFLOAT(&at[0], i); SETFLOAT(&at[1], (final_gs[i] / x->x_dist)); outlet_list(x->x_outlet0, gensym("list"), 2, at); #endif // second, we output the gains for the reverberated signals // these are made up of a global (all speakers) and a local part #ifdef MAXMSP SETLONG(&at[0], i+x->x_ls_amount); // direct signals come first in matrix~ SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i]))); outlet_list(x->x_outlet0, NULL, 2, at); #endif #ifdef PD SETFLOAT(&at[0], (i+x->x_ls_amount)); // direct signals come first in matrix~ SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i]))); outlet_list(x->x_outlet0, gensym("list"), 2, at); #endif } #ifdef MAXMSP outlet_int(x->x_outlet1, x->x_azi); outlet_int(x->x_outlet2, x->x_ele); outlet_int(x->x_outlet3, x->x_spread); outlet_float(x->x_outlet4, (double)x->x_dist); #endif #ifdef PD outlet_float(x->x_outlet1, x->x_azi); outlet_float(x->x_outlet2, x->x_ele); outlet_float(x->x_outlet3, x->x_spread); outlet_float(x->x_outlet4, x->x_dist); #endif } else post("rvbap: Configure loudspeakers first!"); freebytes(final_gs, x->x_ls_amount * sizeof(float)); // bug fix added 9/00 }
/*--------------------------------------------------------------------------*/
static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av) // read in loudspeaker matrices // and calculate the gains for the equally distributed // reverb signal part (i.e. global reverb) { long counter=0; long datapointer=0; long setpointer=0; long i; long deb=0; long azi = x->x_azi, ele = x->x_ele; // store original values float g[3]; long ls[3];
if(ac>0) #ifdef MAXMSP if(av[datapointer].a_type == A_LONG){ x->x_dimension = av[datapointer++].a_w.w_long; x->x_lsset_available=1; } else #endif if(av[datapointer].a_type == A_FLOAT){ x->x_dimension = (long) av[datapointer++].a_w.w_float; x->x_lsset_available=1; } else { post("Error in loudspeaker data!"); x->x_lsset_available=0; return; } //post("%d",deb++); if(ac>1) #ifdef MAXMSP if(av[datapointer].a_type == A_LONG) x->x_ls_amount = av[datapointer++].a_w.w_long; else #endif if(av[datapointer].a_type == A_FLOAT) x->x_ls_amount = (long) av[datapointer++].a_w.w_float; else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } else x->x_lsset_available=0;
if(x->x_dimension == 3) counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension); if(x->x_dimension == 2) counter = (ac - 2) / ((x->x_dimension * x->x_dimension) + x->x_dimension); x->x_lsset_amount=counter;
if(counter<=0) { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; }
while(counter-- > 0){ for(i=0; i < x->x_dimension; i++){ #ifdef MAXMSP if(av[datapointer].a_type == A_LONG) #endif #ifdef PD if(av[datapointer].a_type == A_FLOAT) #endif { x->x_lsset[setpointer][i]=(long)av[datapointer++].a_w.w_float; } else{ post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } for(i=0; i < x->x_dimension*x->x_dimension; i++){ if(av[datapointer].a_type == A_FLOAT){ x->x_set_inv_matx[setpointer][i]=av[datapointer++].a_w.w_float; } else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } if(x->x_dimension == 3){ for(i=0; i < x->x_dimension*x->x_dimension; i++){ if(av[datapointer].a_type == A_FLOAT){ x->x_set_matx[setpointer][i]=av[datapointer++].a_w.w_float; } else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } }
setpointer++; } // now configure static reverb correction values... x->x_azi = x->x_ele = 0; vbap(g,ls, x); for(i=0;i<x->x_ls_amount;i++){ x->x_reverb_gs[i]=0.0; } for(i=0;i<x->x_dimension;i++){ x->x_reverb_gs[ls[i]-1]=g[i]; // post("reverb gs #%d = %f", i, x->x_reverb_gs[i]); } equal_reverb(x,x->x_reverb_gs);
/* for(i=0; i<x->x_ls_amount; i++) // do this for every speaker { post("reverb gs #%d = %f", i, x->x_reverb_gs[i]); } */ post("rvbap: Loudspeaker setup configured!"); x->x_azi = azi; // restore original panning directions x->x_ele = ele; }
#ifdef MAXMSP static void rvbap_in1(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle azimuth { x->x_azi = n; /* store n in a global variable */
}
static void rvbap_in2(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle elevation { x->x_ele = n; /* store n in a global variable */
} /*--------------------------------------------------------------------------*/
static void rvbap_in3(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // spread amount { if (n<0) n = 0; if (n>100) n = 100; x->x_spread = n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_in4(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // distance { if (n<1) n = 1; x->x_dist = (float)n; /* store n in a global variable */
}
static void rvbap_ft1(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle azimuth { x->x_azi = (long) n; /* store n in a global variable */
}
static void rvbap_ft2(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle elevation { x->x_ele = (long) n; /* store n in a global variable */
} /*--------------------------------------------------------------------------*/
static void rvbap_ft3(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // spreading { if (n<0.0) n = 0.0; if (n>100.0) n = 100.0; x->x_spread = (long) n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_ft4(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // distance { if (n<1.0) n = 1.0; x->x_dist = (float)n; /* store n in a global variable */ }
#endif
static void *rvbap_new(t_symbol *s, int ac, t_atom *av) /* create new instance of object... MUST send it an int even if you do nothing with this int!! */ { t_rvbap *x; #ifdef MAXMSP x = (t_rvbap *)newobject(rvbap_class);
floatin(x,4); /* takes the distance */ intin(x,3); intin(x,2); /* create a second (int) inlet... remember right-to-left ordering in Max */ intin(x,1); /* create a second (int) inlet... remember right-to-left ordering in Max */ x->x_outlet4 = floatout(x); /* distance */ x->x_outlet3 = intout(x); x->x_outlet2 = intout(x); /* create an (int) outlet - rightmost outlet first... */ x->x_outlet1 = intout(x); /* create an (int) outlet */ x->x_outlet0 = listout(x); /* create a (list) outlet */ #endif #ifdef PD x = (t_rvbap *)pd_new(rvbap_class); floatinlet_new(&x->x_ob, &x->x_azi); floatinlet_new(&x->x_ob, &x->x_ele); floatinlet_new(&x->x_ob, &x->x_spread); floatinlet_new(&x->x_ob, &x->x_dist);
x->x_outlet0 = outlet_new(&x->x_ob, gensym("list")); x->x_outlet1 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet2 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet3 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet4 = outlet_new(&x->x_ob, gensym("float")); #endif
x->x_azi = 0; x->x_ele = 0; x->x_dist = 1.0; x->x_spread_base[0] = 0.0; x->x_spread_base[1] = 1.0; x->x_spread_base[2] = 0.0; x->x_spread = 0; x->x_lsset_available =0; if (ac>0) { #ifdef MAXMSP if (av[0].a_type == A_LONG) x->x_azi = av[0].a_w.w_long; else #endif if (av[0].a_type == A_FLOAT) x->x_azi = av[0].a_w.w_float; } if (ac>1) { #ifdef MAXMSP if (av[1].a_type == A_LONG) x->x_ele = av[1].a_w.w_long; else #endif if (av[1].a_type == A_FLOAT) x->x_ele = av[1].a_w.w_float; } if (ac>2) { #ifdef MAXMSP if (av[2].a_type == A_LONG) x->x_dist = (float)av[2].a_w.w_long; else #endif if (av[2].a_type == A_FLOAT) x->x_dist = av[2].a_w.w_float; } return(x); /* return a reference to the object instance */ }