Update of /cvsroot/pure-data/externals/sigpack/source In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv12927/d/source
Added Files: chop~.c decimate~.c diode~.c foldback~.c foldover~.c freqdiv~.c freqshift~.c harmgen~.c rectify~.c round~.c sIgpAck.c saturate~.c sieve~.c split~.c ustep~.c vowel~.c Log Message: checked in code from sIgpAck0.03.ZIP; cleaned up comment warnings and changed #ifdef NT to #ifdef _MSC_VER; removed sp. prefix and set up for namespaces
--- NEW FILE: sIgpAck.c --- #ifndef VERSION #define VERSION "0.03" #endif
#include <m_pd.h>
typedef struct _sigpack { t_object x_obj; } t_sigpack;
static t_class* sigpack_class;
void chop_tilde_setup(); void decimate_tilde_setup(); void diode_tilde_setup(); void foldback_tilde_setup(); void foldover_tilde_setup(); void freqdiv_tilde_setup(); void freqshift_tilde_setup(); void harmgen_tilde_setup(); void rectify_tilde_setup(); void round_tilde_setup(); void saturate_tilde_setup(); void sieve_tilde_setup(); void split_tilde_setup(); void ustep_tilde_setup(); void vowel_tilde_setup();
static void* sigpack_new(t_symbol* s) { t_sigpack *x = (t_sigpack *)pd_new(sigpack_class); return (x); }
void sigpack_setup(void) { sigpack_class = class_new(gensym("sIgpAck"), (t_newmethod)sigpack_new, 0, sizeof(t_sigpack), 0,0);
chop_tilde_setup(); decimate_tilde_setup(); diode_tilde_setup(); foldback_tilde_setup(); foldover_tilde_setup(); freqdiv_tilde_setup(); freqshift_tilde_setup(); harmgen_tilde_setup(); rectify_tilde_setup(); round_tilde_setup(); saturate_tilde_setup(); sieve_tilde_setup(); split_tilde_setup(); ustep_tilde_setup(); vowel_tilde_setup();
post("sIgpAck"" "VERSION " weiss www.weiss-archiv.de"); }
--- NEW FILE: freqshift~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #include <math.h> #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #define M_PI 3.14159265358979323846 #endif
/* ------------------------ sp.freqshift~ ----------------------------- */ /* frequency shifter */ /* code from swh_plugins by steve harris www.plugins.org.uk */
#define SIN_T_SIZE 64 #define D_SIZE 256 #define NZEROS 200
static t_class *freqshift_tilde_class;
typedef struct _freqshift_tilde { t_object x_obj; t_float x_shift;//[0 - 5000] float *x_delay; unsigned int x_dptr; t_float x_fs; t_float x_last_shift; t_float x_phi; float *x_sint; float x_f; } t_freqshift_tilde;
static void *freqshift_tilde_new(t_floatarg shift) { unsigned int i;
t_freqshift_tilde *x = (t_freqshift_tilde *)pd_new(freqshift_tilde_class); //x->x_shift = shift; outlet_new(&x->x_obj, gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_shift); x->x_fs = sys_getsr(); x->x_delay = (float *)getbytes(D_SIZE * sizeof(float)); x->x_sint = (float *)getbytes(SIN_T_SIZE * sizeof(float)); x->x_dptr = 0; x->x_phi = 0.0f; x->x_last_shift = 0.0f; x->x_f = 0; for (i = 0; i < SIN_T_SIZE; i++) { x->x_sint[i] = sin(2.0f * M_PI * (float)i / (float)SIN_T_SIZE); } if (shift) x->x_shift = shift; else x->x_shift = 0; return (x); }
/* The non-zero taps of the Hilbert transformer */ static float xcoeffs[] = { +0.0008103736f, +0.0008457886f, +0.0009017196f, +0.0009793364f, +0.0010798341f, +0.0012044365f, +0.0013544008f, +0.0015310235f, +0.0017356466f, +0.0019696659f, +0.0022345404f, +0.0025318040f, +0.0028630784f, +0.0032300896f, +0.0036346867f, +0.0040788644f, +0.0045647903f, +0.0050948365f, +0.0056716186f, +0.0062980419f, +0.0069773575f, +0.0077132300f, +0.0085098208f, +0.0093718901f, +0.0103049226f, +0.0113152847f, +0.0124104218f, +0.0135991079f, +0.0148917649f, +0.0163008758f, +0.0178415242f, +0.0195321089f, +0.0213953037f, +0.0234593652f, +0.0257599469f, +0.0283426636f, +0.0312667947f, +0.0346107648f, +0.0384804823f, +0.0430224431f, +0.0484451086f, +0.0550553725f, +0.0633242001f, +0.0740128560f, +0.0884368322f, +0.1090816773f, +0.1412745301f, +0.1988673273f, +0.3326528346f, +0.9997730178f, -0.9997730178f, -0.3326528346f, -0.1988673273f, -0.1412745301f, -0.1090816773f, -0.0884368322f, -0.0740128560f, -0.0633242001f, -0.0550553725f, -0.0484451086f, -0.0430224431f, -0.0384804823f, -0.0346107648f, -0.0312667947f, -0.0283426636f, -0.0257599469f, -0.0234593652f, -0.0213953037f, -0.0195321089f, -0.0178415242f, -0.0163008758f, -0.0148917649f, -0.0135991079f, -0.0124104218f, -0.0113152847f, -0.0103049226f, -0.0093718901f, -0.0085098208f, -0.0077132300f, -0.0069773575f, -0.0062980419f, -0.0056716186f, -0.0050948365f, -0.0045647903f, -0.0040788644f, -0.0036346867f, -0.0032300896f, -0.0028630784f, -0.0025318040f, -0.0022345404f, -0.0019696659f, -0.0017356466f, -0.0015310235f, -0.0013544008f, -0.0012044365f, -0.0010798341f, -0.0009793364f, -0.0009017196f, -0.0008457886f, -0.0008103736f, };
static float f_clamp(float x, float a, float b) { const float x1 = fabs(x - a); const float x2 = fabs(x - b);
x = x1 + a + b; x -= x2; x *= 0.5;
return x; }
// Round float to int using IEEE int* hack static int f_round(float f) { f += (3<<22); return *((int*)&f) - 0x4b400000; }
// Cubic interpolation function static float cube_interp(const float fr, const float inm1, const float in, const float inp1, const float inp2) { return in + 0.5f * fr * (inp1 - inm1 + fr * (4.0f * inp1 + 2.0f * inm1 - 5.0f * in - inp2 + fr * (3.0f * (in - inp1) - inm1 + inp2))); }
static t_int *freqshift_tilde_perform(t_int *w) { t_freqshift_tilde *x = (t_freqshift_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out1 = (t_float *)(w[3]); t_float *out2 = (t_float *)(w[4]); int n = (int)(w[5]); float f, hilb, rm1, rm2, frac_p; float shift_i = x->x_last_shift; float sample_count = sys_getblksize(); unsigned int i; int int_p; const float shift_c = f_clamp(x->x_shift, 0.0f, 10000.0f); const float shift_inc = (shift_c - x->x_last_shift) / (float)sample_count; const float freq_fix = (float)SIN_T_SIZE / x->x_fs; while (n--) { f = *in++; x->x_delay[x->x_dptr] = f; /* Perform the Hilbert FIR convolution * (probably FFT would be faster) */ hilb = 0.0f; for (i = 0; i <= NZEROS/2; i++) { hilb += (xcoeffs[i] * x->x_delay[(x->x_dptr - i*2) & (D_SIZE - 1)]); }
/* Calcuate the table positions for the sine modulator */ int_p = f_round(floor(x->x_phi));
/* Calculate ringmod1, the transformed input modulated with a shift Hz * sinewave. This creates a +180 degree sideband at source-shift Hz and * a 0 degree sindeband at source+shift Hz */ frac_p = x->x_phi - int_p; rm1 = hilb * cube_interp(frac_p, x->x_sint[int_p], x->x_sint[int_p+1], x->x_sint[int_p+2], x->x_sint[int_p+3]);
/* Calcuate the table positions for the cosine modulator */ int_p = (int_p + SIN_T_SIZE / 4) & (SIN_T_SIZE - 1);
/* Calculate ringmod2, the delayed input modulated with a shift Hz * cosinewave. This creates a 0 degree sideband at source+shift Hz * and a -180 degree sindeband at source-shift Hz */ rm2 = x->x_delay[(x->x_dptr - 100) & (D_SIZE - 1)] * cube_interp(frac_p, x->x_sint[int_p], x->x_sint[int_p+1], x->x_sint[int_p+2], x->x_sint[int_p+3]);
/* Output the sum and differences of the ringmods. The +/-180 degree * sidebands cancel (more of less) and just leave the shifted * components */ *out1++ = (rm2 - rm1) * 0.5f; /*downshifting*/ *out2++ = (rm2 + rm1) * 0.5f; /*upshifting*/
x->x_dptr = (x->x_dptr + 1) & (D_SIZE - 1); x->x_phi += shift_i * freq_fix; while (x->x_phi > SIN_T_SIZE) { x->x_phi -= SIN_T_SIZE; } shift_i += shift_inc; } return (w+6); }
static void freqshift_tilde_dsp(t_freqshift_tilde *x, t_signal **sp) { dsp_add(freqshift_tilde_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); }
static void freqshift_tilde_free(t_freqshift_tilde *x) { if(x->x_delay) freebytes(x->x_delay, D_SIZE * sizeof(float)); if(x->x_sint) freebytes(x->x_sint, SIN_T_SIZE + 4 * sizeof(float)); }
void freqshift_tilde_setup(void) { freqshift_tilde_class = class_new(gensym("sp.freqshift~"), (t_newmethod)freqshift_tilde_new, (t_method)freqshift_tilde_free, sizeof(t_freqshift_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(freqshift_tilde_class, t_freqshift_tilde, x_f); class_addmethod(freqshift_tilde_class, (t_method)freqshift_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: split~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.split~ ----------------------------- */ /* signal splitter */
static t_class *split_tilde_class;
typedef struct _split_tilde { t_object x_obj; float x_f; t_sample x_thres; } t_split_tilde;
static void *split_tilde_new(t_floatarg thres) { t_split_tilde *x = (t_split_tilde *)pd_new(split_tilde_class); x->x_thres = thres; outlet_new(&x->x_obj, gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_thres); x->x_f = 0; if(thres) x->x_thres = thres; else x->x_thres = 0; return (x); }
static t_int *split_tilde_perform(t_int *w) { t_split_tilde *x = (t_split_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out1 = (t_float *)(w[3]); t_float *out2 = (t_float *)(w[4]); int n = (int)(w[5]); while (n--) { float f = *in++; if(f < x->x_thres) { *out1++ = f; *out2++ = 0; } else if(f >= x->x_thres) { *out1++ = 0; *out2++ = f; } } return (w+6); }
static void split_tilde_dsp(t_split_tilde *x, t_signal **sp) { dsp_add(split_tilde_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); }
void split_tilde_setup(void) { split_tilde_class = class_new(gensym("sp.split~"), (t_newmethod)split_tilde_new, 0, sizeof(t_split_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(split_tilde_class, t_split_tilde, x_f); class_addmethod(split_tilde_class, (t_method)split_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: diode~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #include <math.h> #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.diode~ ----------------------------- */ /* Mangles the signal as if it had been passed through a diode rectifier network.*/ /* code from swh_plugins by steve harris www.plugin.org.uk */
static t_class *diode_tilde_class;
typedef struct _diode_tilde { t_object x_obj; t_sample x_mode;//0=none,1=halfWave,2=fullWave float x_f; } t_diode_tilde;
static void *diode_tilde_new(t_floatarg mode) { t_diode_tilde *x = (t_diode_tilde *)pd_new(diode_tilde_class); x->x_mode = mode; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_mode); x->x_f = 0; if(mode) x->x_mode = mode; else x->x_mode = 0; return (x); }
static t_int *diode_tilde_perform(t_int *w) { t_diode_tilde *x = (t_diode_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; while (n--) { f = *in++; if(x->x_mode >= 0.0f && x->x_mode < 1.0f) { value = ((1.0f - x->x_mode) * f + (x->x_mode * (f > 0.0f ? f : 0.0f))); } else if (x->x_mode >= 1.0f && x->x_mode < 2.0f) { float fac = x->x_mode - 1.0f; value = ((1.0f - fac) * (f > 0 ? f : 0.0)) + (fac * fabs(f)); } else if (x->x_mode >= 2) { float fac = x->x_mode < 3 ? x->x_mode - 2 : 1.0; value = (1.0 - fac) * fabs(f); } else { value = f; } *out++ = value; } return (w+5); }
static void diode_tilde_dsp(t_diode_tilde *x, t_signal **sp) { dsp_add(diode_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void diode_tilde_setup(void) { diode_tilde_class = class_new(gensym("sp.diode~"), (t_newmethod)diode_tilde_new, 0, sizeof(t_diode_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(diode_tilde_class, t_diode_tilde, x_f); class_addmethod(diode_tilde_class, (t_method)diode_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: saturate~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #include <math.h> #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.saturate~ ----------------------------- */ /* signal soft saturation */ /* code from www.musicdsp.org posted by bram de jong */
static t_class *saturate_tilde_class;
typedef struct _saturate_tilde { t_object x_obj; t_sample x_thresh; float x_f; } t_saturate_tilde;
static void *saturate_tilde_new(t_floatarg thresh) { t_saturate_tilde *x = (t_saturate_tilde *)pd_new(saturate_tilde_class); x->x_thresh = thresh; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_thresh); x->x_f = 0; if(thresh) x->x_thresh = thresh; else x->x_thresh = 1.; return (x); }
static float sigmoid(float x) { if(fabs(x) < 1) return x * (1.5f - 0.5f * x * x); else return x > 0.f ? 1.f : -1.f; }
static t_int *saturate_tilde_perform(t_int *w) { t_saturate_tilde *x = (t_saturate_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; float t = x->x_thresh; while (n--) { f = *in++; if(fabs(f) < t) value = f; else { if(f > 0.f) value = t + (1.f - t) * sigmoid((f - t)/((1 - t) * 1.5f)); else value = -(t + (1.f - t) * sigmoid((-f - t)/((1 - t) * 1.5f))); } *out++ = value; } return (w+5); }
static void saturate_tilde_dsp(t_saturate_tilde *x, t_signal **sp) { dsp_add(saturate_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void saturate_tilde_setup(void) { saturate_tilde_class = class_new(gensym("sp.saturate~"), (t_newmethod)saturate_tilde_new, 0, sizeof(t_saturate_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(saturate_tilde_class, t_saturate_tilde, x_f); class_addmethod(saturate_tilde_class, (t_method)saturate_tilde_dsp, gensym("dsp"), 0); class_addmethod(saturate_tilde_class, (t_method)saturate_tilde_dsp, gensym("sigmoid"), A_FLOAT, 0); }
--- NEW FILE: freqdiv~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #include <math.h> #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.freqdiv~ ----------------------------- */ /* frequency divider */ /* code from swh_plugins by steve harris www.plugins.org.uk */
static t_class *freqdiv_tilde_class;
typedef struct _freqdiv_tilde { t_object x_obj; t_sample x_denominate; t_sample x_amp; float x_count; t_sample x_lamp; t_sample x_last; t_sample x_out; int x_zeroxs; float x_f; } t_freqdiv_tilde;
static void *freqdiv_tilde_new(t_floatarg denominate) { t_freqdiv_tilde *x = (t_freqdiv_tilde *)pd_new(freqdiv_tilde_class); x->x_denominate = denominate; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_denominate); x->x_f = 0; x->x_amp = 0; x->x_count = 0; x->x_lamp = 0; x->x_last = 0; x->x_out = 0; x->x_zeroxs = 0; if (denominate) x->x_denominate = denominate; else x->x_denominate = 1; return (x); }
static t_int *freqdiv_tilde_perform(t_int *w) { t_freqdiv_tilde *x = (t_freqdiv_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f; int den = (int)x->x_denominate; while (n--) { f = *in++; x->x_count += 1.0f; if ((f > 0.0f && x->x_last <= 0.0f) || (f < 0.0f && x->x_last >= 0.0)) { x->x_zeroxs++; if (den == 1) { x->x_out = x->x_out > 0.0f ? -1.0f : 1.0f; x->x_lamp = x->x_amp / x->x_count; x->x_zeroxs = 0; x->x_count = 0; x->x_amp = 0; } } x->x_amp += fabs(f); if (den > 1 && (x->x_zeroxs % den) == den-1) { x->x_out = x->x_out > 0.0f ? -1.0f : 1.0f; x->x_lamp = x->x_amp / x->x_count; x->x_zeroxs = 0; x->x_count = 0; x->x_amp = 0; } x->x_last = f; *out++ = x->x_out * x->x_lamp; } return (w+5); }
static void freqdiv_tilde_dsp(t_freqdiv_tilde *x, t_signal **sp) { dsp_add(freqdiv_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void freqdiv_tilde_setup(void) { freqdiv_tilde_class = class_new(gensym("sp.freqdiv~"), (t_newmethod)freqdiv_tilde_new, 0, sizeof(t_freqdiv_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(freqdiv_tilde_class, t_freqdiv_tilde, x_f); class_addmethod(freqdiv_tilde_class, (t_method)freqdiv_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: sieve~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.sieve~ ----------------------------- */ /* sift samples */
static t_class *sieve_tilde_class;
typedef struct _sieve_tilde { t_object x_obj; t_sample x_mode; t_sample x_sample; t_sample x_last; float x_f; } t_sieve_tilde;
static void *sieve_tilde_new(t_floatarg mode, t_floatarg sample) { t_sieve_tilde *x = (t_sieve_tilde *)pd_new(sieve_tilde_class); x->x_mode = mode; x->x_sample = sample; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_mode); floatinlet_new(&x->x_obj, &x->x_sample); x->x_last = 0; x->x_f = 0; x->x_mode = 0; if(mode) x->x_mode = mode; if(x->x_mode > 1) x->x_mode = 1; if(x->x_mode < 0) x->x_mode = 0; return (x); }
static float round(float in) { float y, round; int temp; { round = in * 10; temp = round; y = temp * 0.1; } return y; }
static t_int *sieve_tilde_perform(t_int *w) { t_sieve_tilde *x = (t_sieve_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f; int mode = x->x_mode; while (n--) { f = *in++; switch(mode){ case(0): if (round(f) != round(x->x_sample)) { *out++ = f; x->x_last = f; } else { *out++ = x->x_last; } break; case(1): if (round(f) == round(x->x_sample)) { *out++ = f; x->x_last = f; } else { *out++ = x->x_last; } } } return (w+5); }
static void sieve_tilde_dsp(t_sieve_tilde *x, t_signal **sp) { dsp_add(sieve_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void sieve_tilde_setup(void) { sieve_tilde_class = class_new(gensym("sp.sieve~"), (t_newmethod)sieve_tilde_new, 0, sizeof(t_sieve_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(sieve_tilde_class, t_sieve_tilde, x_f); class_addmethod(sieve_tilde_class, (t_method)sieve_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: ustep~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.ustep~ ----------------------------- */ /* signal unity step function */
static t_class *ustep_tilde_class;
typedef struct _ustep_tilde { t_object x_obj; t_sample x_mode; t_sample x_thres; float x_f; } t_ustep_tilde;
static void *ustep_tilde_new(t_floatarg mode, t_floatarg thres) { t_ustep_tilde *x = (t_ustep_tilde *)pd_new(ustep_tilde_class); x->x_mode = mode; x->x_thres = thres; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_mode); floatinlet_new(&x->x_obj, &x->x_thres); x->x_f = 0; if(mode) x->x_mode = mode; else x->x_mode = 0; if(x->x_mode > 1) x->x_mode = 1; if(x->x_mode < 0) x->x_mode = 0; if(thres) x->x_thres = thres; else x->x_thres = 0.5; return (x); }
static t_int *ustep_tilde_perform(t_int *w) { t_ustep_tilde *x = (t_ustep_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; int mode = x->x_mode; while (n--) { f = *in++; switch(mode){ case(0): if (f >= x->x_thres) value = 1; else value = 0; break; case(1): if (f >= x->x_thres) value = 1; else value = f; } *out++ = value; } return (w+5); }
static void ustep_tilde_dsp(t_ustep_tilde *x, t_signal **sp) { dsp_add(ustep_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void ustep_tilde_setup(void) { ustep_tilde_class = class_new(gensym("sp.ustep~"), (t_newmethod)ustep_tilde_new, 0, sizeof(t_ustep_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(ustep_tilde_class, t_ustep_tilde, x_f); class_addmethod(ustep_tilde_class, (t_method)ustep_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: round~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.round~ ----------------------------- */ /* simple rounder */
static t_class *round_tilde_class;
typedef struct _round_tilde { t_object x_obj; t_sample x_coarse; float x_f; } t_round_tilde;
static void *round_tilde_new(t_floatarg coarse) { t_round_tilde *x = (t_round_tilde *)pd_new(round_tilde_class); x->x_coarse = coarse; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_coarse); x->x_f = 0; if(coarse) x->x_coarse = coarse; else x->x_coarse = 1; return (x); }
static t_int *round_tilde_perform(t_int *w) { t_round_tilde *x = (t_round_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, mult, value; while (n--) { f = *in++; mult = f * x->x_coarse; value = (int)mult / x->x_coarse; *out++ = value; } return (w+5); }
static void round_tilde_dsp(t_round_tilde *x, t_signal **sp) { dsp_add(round_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void round_tilde_setup(void) { round_tilde_class = class_new(gensym("sp.round~"), (t_newmethod)round_tilde_new, 0, sizeof(t_round_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(round_tilde_class, t_round_tilde, x_f); class_addmethod(round_tilde_class, (t_method)round_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: decimate~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
// ------------------------ sp.decimate~ ----------------------------- // signal decimation // code from musicdsp.org posted by tobybear
static t_class *decimate_tilde_class;
typedef struct _decimate_tilde { t_object x_obj; t_sample x_rate; t_sample x_bits; float x_f; } t_decimate_tilde;
static void *decimate_tilde_new(t_floatarg rate, t_floatarg bits) { t_decimate_tilde *x = (t_decimate_tilde *)pd_new(decimate_tilde_class); x->x_rate = rate; x->x_bits = bits; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_rate); floatinlet_new(&x->x_obj, &x->x_bits); x->x_f = 0; if (rate) x->x_rate = rate; else x->x_rate = 0.5; if (bits) x->x_bits = bits; else x->x_bits = 16; return (x); }
static t_int *decimate_tilde_perform(t_int *w) { t_decimate_tilde *x = (t_decimate_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f; long int m=1<<(int)(x->x_bits-1); float y=0, cnt=0; while (n--) { f = *in++; cnt+=x->x_rate; if (cnt>=1) { cnt-=1; y=(long int)(f*m)/(float)m; } *out++ = y; } return (w+5); }
static void decimate_tilde_dsp(t_decimate_tilde *x, t_signal **sp) { dsp_add(decimate_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void decimate_tilde_setup(void) { decimate_tilde_class = class_new(gensym("sp.decimate~"), (t_newmethod)decimate_tilde_new, 0, sizeof(t_decimate_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(decimate_tilde_class, t_decimate_tilde, x_f); class_addmethod(decimate_tilde_class, (t_method)decimate_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: foldover~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.foldover~ ----------------------------- */ /* foldover distortion */ /* code from swh_plugins by steve harris www.plugin.org.uk */
static t_class *foldover_tilde_class;
typedef struct _foldover_tilde { t_object x_obj; t_sample x_drive_p; t_sample x_push; float x_f; } t_foldover_tilde;
static void *foldover_tilde_new(t_floatarg drive_p, t_floatarg push) { t_foldover_tilde *x = (t_foldover_tilde *)pd_new(foldover_tilde_class); x->x_drive_p = drive_p; x->x_push = push; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_drive_p); floatinlet_new(&x->x_obj, &x->x_push); x->x_f = 0; if(drive_p) x->x_drive_p = drive_p; else x->x_drive_p = 0; if(push) x->x_push = push; else x->x_push = 0; return (x); }
static t_int *foldover_tilde_perform(t_int *w) { t_foldover_tilde *x = (t_foldover_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value, y; float drive = x->x_drive_p + 1.0f; while (n--) { f = *in++; y = f * drive + x->x_push; value = 1.5f * y - 0.5f * y * y *y; *out++ = value; } return (w+5); }
static void foldover_tilde_dsp(t_foldover_tilde *x, t_signal **sp) { dsp_add(foldover_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void foldover_tilde_setup(void) { foldover_tilde_class = class_new(gensym("sp.foldover~"), (t_newmethod)foldover_tilde_new, 0, sizeof(t_foldover_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(foldover_tilde_class, t_foldover_tilde, x_f); class_addmethod(foldover_tilde_class, (t_method)foldover_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: rectify~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.rectify~ ----------------------------- */ /* flips negative signal values to positive */
static t_class *rectify_tilde_class;
typedef struct _rectify_tilde { t_object x_obj; float x_f; } t_rectify_tilde;
static void *rectify_tilde_new(void) { t_rectify_tilde *x = (t_rectify_tilde *)pd_new(rectify_tilde_class); outlet_new(&x->x_obj, gensym("signal")); x->x_f = 0; return (x); }
static t_int *rectify_tilde_perform(t_int *w) { t_rectify_tilde *x = (t_rectify_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; while (n--) { f = *in++; if (f < 0) value = f * -1; else value = f; *out++ = value; } return (w+5); }
static void rectify_tilde_dsp(t_rectify_tilde *x, t_signal **sp) { dsp_add(rectify_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void rectify_tilde_setup(void) { rectify_tilde_class = class_new(gensym("sp.rectify~"), (t_newmethod)rectify_tilde_new, 0, sizeof(t_rectify_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(rectify_tilde_class, t_rectify_tilde, x_f); class_addmethod(rectify_tilde_class, (t_method)rectify_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: vowel~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.vowel~ ----------------------------- */ /* simple formant filter */ /* code from musicdsp.org posted by alex@smartelectronix.com */
static t_class *vowel_tilde_class;
typedef struct _vowel_tilde { t_object x_obj; t_sample x_vowelnum; float x_f; } t_vowel_tilde;
static void *vowel_tilde_new(t_floatarg vowelnum) { t_vowel_tilde *x = (t_vowel_tilde *)pd_new(vowel_tilde_class); x->x_vowelnum = vowelnum; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_vowelnum); x->x_f = 0; if(vowelnum) x->x_vowelnum = vowelnum; else x->x_vowelnum = 0; return (x); }
const double coeff[5][11]= { { 8.11044e-06, 8.943665402, -36.83889529, 92.01697887, -154.337906, 181.6233289, -151.8651235, 89.09614114, -35.10298511, 8.388101016, -0.923313471 ///A }, { 4.36215e-06, 8.90438318, -36.55179099, 91.05750846, -152.422234, 179.1170248, ///E -149.6496211,87.78352223, -34.60687431, 8.282228154, -0.914150747 }, { 3.33819e-06, 8.893102966, -36.49532826, 90.96543286, -152.4545478, 179.4835618, -150.315433, 88.43409371, -34.98612086, 8.407803364, -0.932568035 ///I }, { 1.13572e-06, 8.994734087, -37.2084849, 93.22900521, -156.6929844, 184.596544, ///O -154.3755513, 90.49663749, -35.58964535, 8.478996281, -0.929252233 }, { 4.09431e-07, 8.997322763, -37.20218544, 93.11385476, -156.2530937, 183.7080141, ///U -153.2631681, 89.59539726, -35.12454591, 8.338655623, -0.910251753 } };
static double memory[10] = {0,0,0,0,0,0,0,0,0,0};
float formant_filter (float in, int vowelnum) { float res; res= (float) (coeff[vowelnum][0]*in + coeff[vowelnum][1]*memory[0] + coeff[vowelnum][2]*memory[1] + coeff[vowelnum][3]*memory[2] + coeff[vowelnum][4]*memory[3] + coeff[vowelnum][5]*memory[4] + coeff[vowelnum][6]*memory[5] + coeff[vowelnum][7]*memory[6] + coeff[vowelnum][8]*memory[7] + coeff[vowelnum][9]*memory[8] + coeff[vowelnum][10]*memory[9]);
memory[9]=memory[8]; memory[8]=memory[7]; memory[7]=memory[6]; memory[6]=memory[5]; memory[5]=memory[4]; memory[4]=memory[3]; memory[3]=memory[2]; memory[2]=memory[1]; memory[1]=memory[0]; memory[0]=(double)res; return res; }
static t_int *vowel_tilde_perform(t_int *w) { t_vowel_tilde *x = (t_vowel_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; while (n--) { f = *in++; value = formant_filter(f, (int)x->x_vowelnum); *out++ = value; } return (w+5); }
static void vowel_tilde_dsp(t_vowel_tilde *x, t_signal **sp) { dsp_add(vowel_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void vowel_tilde_setup(void) { vowel_tilde_class = class_new(gensym("sp.vowel~"), (t_newmethod)vowel_tilde_new, 0, sizeof(t_vowel_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(vowel_tilde_class, t_vowel_tilde, x_f); class_addmethod(vowel_tilde_class, (t_method)vowel_tilde_dsp, gensym("dsp"), 0); class_addmethod(vowel_tilde_class, (t_method)formant_filter, gensym("formant_filter"), A_GIMME, A_NULL); }
--- NEW FILE: chop~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
// ------------------------ sp.chop~ ----------------------------- // signal chopping modulator
static t_class *chop_tilde_class;
typedef struct _chop_tilde { t_object x_obj; t_sample x_factor; float x_f; } t_chop_tilde;
static void *chop_tilde_new(t_floatarg factor) { t_chop_tilde *x = (t_chop_tilde *)pd_new(chop_tilde_class); x->x_factor = factor; outlet_new(&x->x_obj, gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); floatinlet_new(&x->x_obj, &x->x_factor); x->x_f = 0; if(factor) x->x_factor = factor; else x->x_factor = 0; return (x); }
static t_int *chop_tilde_perform(t_int *w) { t_chop_tilde *x = (t_chop_tilde *)(w[1]); t_float *in1 = (t_float *)(w[2]); t_float *in2 = (t_float *)(w[3]); t_float *out = (t_float *)(w[4]); int n = (int)(w[5]); float f, m, value; while (n--) { f = *in1++; m = *in2++; if(m > 0.) value = f * x->x_factor; else value = f; *out++ = value; } return (w+6); }
static void chop_tilde_dsp(t_chop_tilde *x, t_signal **sp) { dsp_add(chop_tilde_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); }
void chop_tilde_setup(void) { chop_tilde_class = class_new(gensym("sp.chop~"), (t_newmethod)chop_tilde_new, 0, sizeof(t_chop_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(chop_tilde_class, t_chop_tilde, x_f); class_addmethod(chop_tilde_class, (t_method)chop_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: foldback~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif
/* ------------------------ sp.foldback~ ----------------------------- */ /* signal mirror */
static t_class *foldback_tilde_class;
typedef struct _foldback_tilde { t_object x_obj; t_sample x_low; t_sample x_high; float x_f; } t_foldback_tilde;
static void *foldback_tilde_new(t_floatarg low, t_floatarg high) { t_foldback_tilde *x = (t_foldback_tilde *)pd_new(foldback_tilde_class); x->x_low = low; x->x_high = high; outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_low); floatinlet_new(&x->x_obj, &x->x_high); x->x_f = 0; if(low) x->x_low = low; else x->x_low = -1; if(high) x->x_high = high; else x->x_high = 1; return (x); }
static t_int *foldback_tilde_perform(t_int *w) { t_foldback_tilde *x = (t_foldback_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f, value; while (n--) { f = *in++; if(f < x->x_low) value = (f - ((f - x->x_low) * 2)); else if(f > x->x_high) value = (f - ((f - x->x_high) * 2)); else value = f; *out++ = value; } return (w+5); }
static void foldback_tilde_dsp(t_foldback_tilde *x, t_signal **sp) { dsp_add(foldback_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void foldback_tilde_setup(void) { foldback_tilde_class = class_new(gensym("sp.foldback~"), (t_newmethod)foldback_tilde_new, 0, sizeof(t_foldback_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(foldback_tilde_class, t_foldback_tilde, x_f); class_addmethod(foldback_tilde_class, (t_method)foldback_tilde_dsp, gensym("dsp"), 0); }
--- NEW FILE: harmgen~.c --- /* sIgpAck * for * pure-data * www.weiss-archiv.de */
#include "m_pd.h" #include <math.h> #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif #define HARMONICS 11
// ------------------------ sp.harmgen~ ----------------------------- // harmonic generator // code from swh_plugins by steve harris www.plugins.org.uk
static t_class *harmgen_tilde_class;
typedef struct _harmgen_tilde { t_object x_obj; t_sample x_mag1; t_sample x_mag2; t_sample x_mag3; t_sample x_mag4; t_sample x_mag5; t_sample x_mag6; t_sample x_mag7; t_sample x_mag8; t_sample x_mag9; t_sample x_mag10; float x_itm; float x_otm; float x_f; } t_harmgen_tilde;
static void *harmgen_tilde_new(t_floatarg mag1, t_floatarg mag2, t_floatarg mag3, t_floatarg mag4, t_floatarg mag5, t_floatarg mag6, t_floatarg mag7, t_floatarg mag8, t_floatarg mag9, t_floatarg mag10) { t_harmgen_tilde *x = (t_harmgen_tilde *)pd_new(harmgen_tilde_class); outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_mag1); floatinlet_new(&x->x_obj, &x->x_mag2); floatinlet_new(&x->x_obj, &x->x_mag3); floatinlet_new(&x->x_obj, &x->x_mag4); floatinlet_new(&x->x_obj, &x->x_mag5); floatinlet_new(&x->x_obj, &x->x_mag6); floatinlet_new(&x->x_obj, &x->x_mag7); floatinlet_new(&x->x_obj, &x->x_mag8); floatinlet_new(&x->x_obj, &x->x_mag9); floatinlet_new(&x->x_obj, &x->x_mag10); x->x_f = 0; if(mag1) x->x_mag1 = mag1; else x->x_mag1 = 1; if(mag2) x->x_mag2 = mag2; else x->x_mag2 = 1; if(mag3) x->x_mag3 = mag3; else x->x_mag3 = 1; if(mag4) x->x_mag4 = mag4; else x->x_mag4 = 1; if(mag5) x->x_mag5 = mag5; else x->x_mag5 = 1; if(mag6) x->x_mag6 = mag6; else x->x_mag6 = 1; if(mag7) x->x_mag7 = mag7; else x->x_mag7 = 1; if(mag8) x->x_mag8 = mag8; else x->x_mag8 = 1; if(mag9) x->x_mag9 = mag9; else x->x_mag9 = 1; if(mag10) x->x_mag10 = mag10; else x->x_mag10 = 1; return (x); }
/* Calculate Chebychev coefficents from partial magnitudes, adapted from * example in Num. Rec. */ void chebpc(float c[], float d[]) { int k, j; float sv, dd[HARMONICS];
for (j = 0; j < HARMONICS; j++) { d[j] = dd[j] = 0.0; }
d[0] = c[HARMONICS - 1];
for (j = HARMONICS - 2; j >= 1; j--) { for (k = HARMONICS - j; k >= 1; k--) { sv = d[k]; d[k] = 2.0 * d[k - 1] - dd[k]; dd[k] = sv; } sv = d[0]; d[0] = -dd[0] + c[j]; dd[0] = sv; }
for (j = HARMONICS - 1; j >= 1; j--) { d[j] = d[j - 1] - dd[j]; } d[0] = -dd[0] + 0.5 * c[0]; }
static t_int *harmgen_tilde_perform(t_int *w) { t_harmgen_tilde *x = (t_harmgen_tilde *)(w[1]); t_float *in1 = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); unsigned long i; float mag_fix, y, f, value; float mag[HARMONICS] = {0.0f, x->x_mag1, x->x_mag2, x->x_mag3, x->x_mag4, x->x_mag5, x->x_mag6, x->x_mag7, x->x_mag8, x->x_mag9, x->x_mag10}; float p[HARMONICS];
// Normalise magnitudes mag_fix = (fabs(x->x_mag1) + fabs(x->x_mag2) + fabs(x->x_mag3) + fabs(x->x_mag4) + fabs(x->x_mag5) + fabs(x->x_mag6) + fabs(x->x_mag7) + fabs(x->x_mag8) + fabs(x->x_mag9) + fabs(x->x_mag10)); if (mag_fix < 1.0f) { mag_fix = 1.0f; } else { mag_fix = 1.0f / mag_fix; } for (i=0; i<HARMONICS; i++) { mag[i] *= mag_fix; }
// Calculate polynomial coefficients, using Chebychev aproximation chebpc(mag, p); while (n--) { f = *in1++;
// Calculate the polynomial using Horner's Rule y = p[0] + (p[1] + (p[2] + (p[3] + (p[4] + (p[5] + (p[6] + (p[7] + (p[8] + (p[9] + p[10] * f) * f) * f) * f) * f) * f) * f) * f) * f) * f;
// DC offset remove (odd harmonics cause DC offset) x->x_otm = 0.999f * x->x_otm + y - x->x_itm; x->x_itm = y; *out++ = x->x_otm; } return (w+5); }
static void harmgen_tilde_dsp(t_harmgen_tilde *x, t_signal **sp) { dsp_add(harmgen_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); }
void harmgen_tilde_setup(void) { harmgen_tilde_class = class_new(gensym("sp.harmgen~"), (t_newmethod)harmgen_tilde_new, 0, sizeof(t_harmgen_tilde), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(harmgen_tilde_class, t_harmgen_tilde, x_f); class_addmethod(harmgen_tilde_class, (t_method)harmgen_tilde_dsp, gensym("dsp"), 0); }